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Preface

SPSS 14.0 is a comprehensive system for analyzing data. The Categories optional
add-on module provides the additional analytic techniques described in this manual.
The Categories add-on module must be used with the SPSS 14.0 Base system and is
completely integrated into that system.

Installation

To install the SPSS Categories add-on module, run the License Authorization Wizard
using the authorization code that you received from SPSS Inc. For more information,
see the installation instructions supplied with the SPSS Categories add-on module.

Compatibility

SPSS is designed to run on many computer systems. See the installation instructions
that came with your system for specific information on minimum and recommended
requirements.

Serial Numbers

Your serial number is your identification number with SPSS Inc. You will need this
serial number when you contact SPSS Inc. for information regarding support, payment,
or an upgraded system. The serial number was provided with your Base system.

Customer Service

If you have any questions concerning your shipment or account, contact your local
office, listed on the SPSS Web site at http.//www.spss.com/worldwide. Please have
your serial number ready for identification.



Training Seminars

SPSS Inc. provides both public and onsite training seminars. All seminars feature
hands-on workshops. Seminars will be offered in major cities on a regular basis. For
more information on these seminars, contact your local office, listed on the SPSS Web
site at http://www.spss.com/worldwide.

Technical Support

The services of SPSS Technical Support are available to maintenance customers.
Customers may contact Technical Support for assistance in using SPSS or for
installation help for one of the supported hardware environments. To reach Technical
Support, see the SPSS Web site at http://www.spss.com, or contact your local office,
listed on the SPSS Web site at http://www.spss.com/worldwide. Be prepared to identify
yourself, your organization, and the serial number of your system.

Additional Publications

Additional copies of SPSS product manuals may be purchased directly from SPSS Inc.
Visit the SPSS Web Store at http://www.spss.com/estore, or contact your local SPSS
office, listed on the SPSS Web site at http://www.spss.com/worldwide. For telephone
orders in the United States and Canada, call SPSS Inc. at 800-543-2185. For telephone
orders outside of North America, contact your local office, listed on the SPSS Web site.
The SPSS Statistical Procedures Companion, by Marija Norusis, has been published
by Prentice Hall. A new version of this book, updated for SPSS 14.0, is planned.
The SPSS Advanced Statistical Procedures Companion, also based on SPSS 14.0, is
forthcoming. The SPSS Guide to Data Analysis for SPSS 14.0 is also in development.
Announcements of publications available exclusively through Prentice Hall will be
available on the SPSS Web site at http://www.spss.com/estore (select your home
country, and then click Books).

Tell Us Your Thoughts

Your comments are important. Please let us know about your experiences with SPSS
products. We especially like to hear about new and interesting applications using the
SPSS Categories add-on module. Please send e-mail to suggest@spss.com or write
to SPSS Inc., Attn.: Director of Product Planning, 233 South Wacker Drive, 11th
Floor, Chicago, IL 60606-6412.



About This Manual

This manual documents the graphical user interface for the procedures included in the
SPSS Categories add-on module. Illustrations of dialog boxes are taken from SPSS for
Windows. Dialog boxes in other operating systems are similar. Detailed information
about the command syntax for features in the SPSS Categories add-on module is
available in two forms: integrated into the overall Help system and as a separate
document in PDF form in the SPSS 714.0 Command Syntax Reference, available from
the Help menu.

Contacting SPSS

If you would like to be on our mailing list, contact one of our offices, listed on our Web
site at http://www.spss.com/worldwide.
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Chapter

1
Introduction to SPSS Optimal

Scaling Procedures for
Categorical Data

SPSS Categories procedures use optimal scaling to analyze data that are difficult or
impossible for standard statistical procedures to analyze. This chapter describes what
each procedure does, the situations in which each procedure is most appropriate, the
relationships between the procedures, and the relationships of these procedures to their
standard statistical counterparts.

Note: These procedures and their SPSS implementation were developed by the Data
Theory Scaling System Group (DTSS), consisting of members of the departments
of Education and Psychology, Faculty of Social and Behavioral Sciences, Leiden
University.

What Is Optimal Scaling?

The idea behind optimal scaling is to assign numerical quantifications to the categories
of each variable, thus allowing standard procedures to be used to obtain a solution on
the quantified variables.

The optimal scale values are assigned to categories of each variable based on the
optimizing criterion of the procedure in use. Unlike the original labels of the nominal
or ordinal variables in the analysis, these scale values have metric properties.

In most Categories procedures, the optimal quantification for each scaled variable is
obtained through an iterative method called alternating least squares in which, after
the current quantifications are used to find a solution, the quantifications are updated
using that solution. The updated quantifications are then used to find a new solution,
which is used to update the quantifications, and so on, until some criterion is reached
that signals the process to stop.
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Why Use Optimal Scaling?

Categorical data are often found in marketing research, survey research, and research
in the social and behavioral sciences. In fact, many researchers deal almost exclusively
with categorical data.

While adaptations of most standard models exist specifically to analyze categorical
data, they often do not perform well for data sets that feature:

® Too few observations
B Too many variables

B Too many values per variable

By quantifying categories, optimal scaling techniques avoid problems in these
situations. Moreover, they are useful even when specialized techniques are appropriate.
Rather than interpreting parameter estimates, the interpretation of optimal scaling
output is often based on graphical displays. Optimal scaling techniques offer excellent

exploratory analyses, which complement other SPSS models well. By narrowing the
focus of your investigation, visualizing your data through optimal scaling can form the
basis of an analysis that centers on interpretation of model parameters.

Optimal Scaling Level and Measurement Level

This can be a very confusing concept when you first use Categories procedures. When
specifying the level, you specify not the level at which variables are measured but the

level at which they are scaled. The idea is that the variables to be quantified may have
nonlinear relations regardless of how they are measured.

For Categories purposes, there are three basic levels of measurement:

B The nominal level implies that a variable’s values represent unordered categories.
Examples of variables that might be nominal are region, zip code area, religious
affiliation, and multiple choice categories.

B The ordinal level implies that a variable’s values represent ordered categories.
Examples include attitude scales representing degree of satisfaction or confidence
and preference rating scores.

®  The numerical level implies that a variable’s values represent ordered categories
with a meaningful metric so that distance comparisons between categories are
appropriate. Examples include age in years and income in thousands of dollars.
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For example, suppose that the variables region, job, and age are coded as shown in
the following table.

Table 1-1
Coding scheme for region, job, and age
Region Job Age
1 North 1 |intern 20 |twenty years old
2 South 2 |sales rep 22 | twenty-two years old
3 |East 3 | manager 25 |twenty-five years old
4 | West 27 |twenty-seven years old

The values shown represent the categories of each variable. Region would be a nominal
variable. There are four categories of region, with no intrinsic ordering. Values 1
through 4 simply represent the four categories; the coding scheme is completely
arbitrary. Job, on the other hand, could be assumed to be an ordinal variable.

The original categories form a progression from intern to manager. Larger codes
represent a job higher on the corporate ladder. However, only the order information
is known—nothing can be said about the distance between adjacent categories. In
contrast, age could be assumed to be a numerical variable. In the case of age, the
distances between the values are intrinsically meaningful. The distance between 20
and 22 is the same as the distance between 25 and 27, while the distance between
22 and 25 is greater than either of these.

Selecting the Optimal Scaling Level

It is important to understand that there are no intrinsic properties of a variable that
automatically predefine what optimal scaling level you should specify for it. You can
explore your data in any way that makes sense and makes interpretation easier. By
analyzing a numerical-level variable at the ordinal level, for example, the use of a
nonlinear transformation may allow a solution in fewer dimensions.

The following two examples illustrate how the “obvious” level of measurement
might not be the best optimal scaling level. Suppose that a variable sorts objects into
age groups. Although age can be scaled as a numerical variable, it may be true that
for people younger than 25 safety has a positive relation with age, whereas for people
older than 60 safety has a negative relation with age. In this case, it might be better to
treat age as a nominal variable.
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As another example, a variable that sorts persons by political preference appears to
be essentially nominal. However, if you order the parties from political left to political
right, you might want the quantification of parties to respect this order by using an
ordinal level of analysis.

Even though there are no predefined properties of a variable that make it exclusively
one level or another, there are some general guidelines to help the novice user. With
single-nominal quantification, you don’t usually know the order of the categories but
you want the analysis to impose one. If the order of the categories is known, you
should try ordinal quantification. If the categories are unorderable, you might try
multiple-nominal quantification.

Transformation Plots

The different levels at which each variable can be scaled impose different restrictions
on the quantifications. Transformation plots illustrate the relationship between the
quantifications and the original categories resulting from the selected optimal scaling
level. For example, a linear transformation plot results when a variable is treated as
numerical. Variables treated as ordinal result in a nondecreasing transformation plot.
Transformation plots for variables treated nominally that are U-shaped (or the inverse)
display a quadratic relationship. Nominal variables could also yield transformation
plots without apparent trends by changing the order of the categories completely. The
following figure displays a sample transformation plot.

Transformation plots are particularly suited to determining how well the selected
optimal scaling level performs. If several categories receive similar quantifications,
collapsing these categories into one category may be warranted. Alternatively, if a
variable treated as nominal receives quantifications that display an increasing trend,
an ordinal transformation may result in a similar fit. If that trend is linear, numerical
treatment may be appropriate. However, if collapsing categories or changing scaling
levels is warranted, the analysis will not change significantly.
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Figure 1-1
Transformation plot of price (numerical)
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Some care should be taken when coding categorical variables because some coding
schemes may yield unwanted output or incomplete analyses. Possible coding schemes
for job are displayed in the following table.

Table 1-2
Alternative coding schemes for job

Scheme
Category A B C D
intern 1 1 5 1
sales rep 2 2 6 5
manager 3 7 7 3

Some Categories procedures require that the range of every variable used be defined.
Any value outside this range is treated as a missing value. The minimum category
value is always 1. The maximum category value is supplied by the user. This value
is not the number of categories for a variable—it is the largest category value. For
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example, in the table, scheme A has a maximum category value of 3 and scheme B has
a maximum category value of 7, yet both schemes code the same three categories.

The variable range determines which categories will be omitted from the analysis.
Any categories with codes outside the defined range are omitted from the analysis.
This is a simple method for omitting categories but can result in unwanted analyses.
An incorrectly defined maximum category can omit valid categories from the analysis.
For example, for scheme B, defining the maximum category value to be 3 indicates
that job has categories coded from 1 to 3; the manager category is treated as missing.
Because no category has actually been coded 3, the third category in the analysis
contains no cases. If you wanted to omit all manager categories, this analysis would be
appropriate. However, if managers are to be included, the maximum category must be
defined as 7, and missing values must be coded with values above 7 or below 1.

For variables treated as nominal or ordinal, the range of the categories does not
affect the results. For nominal variables, only the label and not the value associated
with that label is important. For ordinal variables, the order of the categories is
preserved in the quantifications; the category values themselves are not important. All
coding schemes resulting in the same category ordering will have identical results.
For example, the first three schemes in the table are functionally equivalent if job is
analyzed at an ordinal level. The order of the categories is identical in these schemes.
Scheme D, on the other hand, inverts the second and third categories and will yield
different results than the other schemes.

Although many coding schemes for a variable are functionally equivalent, schemes
with small differences between codes are preferred because the codes have an impact
on the amount of output produced by a procedure. All categories coded with values
between 1 and the user-defined maximum are valid. If any of these categories are
empty, the corresponding quantifications will be either system-missing or 0, depending
on the procedure. Although neither of these assignments affect the analyses, output
is produced for these categories. Thus, for scheme B, job has four categories that
receive system-missing values. For scheme C, there are also four categories receiving
system-missing indicators. In contrast, for scheme A there are no system-missing
quantifications. Using consecutive integers as codes for variables treated as nominal or
ordinal results in much less output without affecting the results.

Coding schemes for variables treated as numerical are more restricted than the
ordinal case. For these variables, the differences between consecutive categories are
important. The following table displays three coding schemes for age.
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Table 1-3

Alternative coding schemes for age
Scheme

Category A B C
20 20 1 1
22 22 3 2
25 25 6 3
27 27 8 4

Any recoding of numerical variables must preserve the differences between the
categories. Using the original values is one method for ensuring preservation of
differences. However, this can result in many categories having system-missing
indicators. For example, scheme A employs the original observed values. For all
Categories procedures except for Correspondence Analysis, the maximum category
value is 27 and the minimum category value is set to 1. The first 19 categories are
empty and receive system-missing indicators. The output can quickly become rather
cumbersome if the maximum category is much greater than 1 and there are many
empty categories between 1 and the maximum.

To reduce the amount of output, recoding can be done. However, in the numerical
case, the Automatic Recode facility should not be used. Coding to consecutive integers
results in differences of 1 between all consecutive categories, and, as a result, all
quantifications will be equally spaced. The metric characteristics deemed important
when treating a variable as numerical are destroyed by recoding to consecutive
integers. For example, scheme C in the table corresponds to automatically recoding
age. The difference between categories 22 and 25 has changed from three to one, and
the quantifications will reflect the latter difference.

An alternative recoding scheme that preserves the differences between categories is
to subtract the smallest category value from every category and add 1 to each difference.
Scheme B results from this transformation. The smallest category value, 20, has been
subtracted from each category, and 1 was added to each result. The transformed
codes have a minimum of 1, and all differences are identical to the original data. The
maximum category value is now 8, and the zero quantifications before the first nonzero
quantification are all eliminated. Yet, the nonzero quantifications corresponding to each
category resulting from scheme B are identical to the quantifications from scheme A.
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Which Procedure Is Best for Your Application?

The techniques embodied in four of these procedures (Correspondence Analysis,
Multiple Correspondence Analysis, Categorical Principal Components Analysis, and
Nonlinear Canonical Correlation Analysis) fall into the general area of multivariate data
analysis known as dimension reduction. That is, relationships between variables are
represented in a few dimensions—say two or three—as often as possible. This enables
you to describe structures or patterns in the relationships that would be too difficult
to fathom in their original richness and complexity. In market research applications,
these techniques can be a form of perceptual mapping. A major advantage of these
procedures is that they accommodate data with different levels of optimal scaling.
Categorical Regression describes the relationship between a categorical response
variable and a combination of categorical predictor variables. The influence of
each predictor variable on the response variable is described by the corresponding
regression weight. As in the other procedures, data can be analyzed with different
levels of optimal scaling.
Multidimensional Scaling and Multidimensional Unfolding describe relationships
between objects in a low-dimensional space, using the proximities between the objects.

Following are brief guidelines for each of the procedures:

m  Use Categorical Regression to predict the values of a categorical dependent
variable from a combination of categorical independent variables.

m  Use Categorical Principal Components Analysis to account for patterns of variation
in a single set of variables of mixed optimal scaling levels.

m  Use Nonlinear Canonical Correlation Analysis to assess the extent to which two or
more sets of variables of mixed optimal scaling levels are correlated.

B Use Correspondence Analysis to analyze two-way contingency tables or data that
can be expressed as a two-way table, such as brand preference or sociometric
choice data.

B Use Multiple Correspondence Analysis to analyze a categorical multivariate data
matrix when you are willing to make no stronger assumption that all variables are
analyzed at the nominal level.

B Use Multidimensional Scaling to analyze proximity data to find a least-squares
representation of a single set of objects in a low-dimensional space.

m  Use Multidimensional Unfolding to analyze proximity data to find a least-squares
representation of two sets of objects in a low-dimensional space.
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Categorical Regression

The use of Categorical Regression is most appropriate when the goal of your analysis
is to predict a dependent (response) variable from a set of independent (predictor)
variables. As with all optimal scaling procedures, scale values are assigned to each
category of every variable such that these values are optimal with respect to the
regression. The solution of a categorical regression maximizes the squared correlation
between the transformed response and the weighted combination of transformed
predictors.

Relation to other Categories procedures. Categorical regression with optimal scaling

is comparable to optimal scaling canonical correlation analysis with two sets, one of
which contains only the dependent variable. In the latter technique, similarity of sets is
derived by comparing each set to an unknown variable that lies somewhere between all
of the sets. In categorical regression, similarity of the transformed response and the
linear combination of transformed predictors is assessed directly.

Relation to standard techniques. In standard linear regression, categorical variables can
either be recoded as indicator variables or be treated in the same fashion as interval
level variables. In the first approach, the model contains a separate intercept and slope
for each combination of the levels of the categorical variables. This results in a large
number of parameters to interpret. In the second approach, only one parameter is
estimated for each variable. However, the arbitrary nature of the category codings
makes generalizations impossible.

If some of the variables are not continuous, alternative analyses are available. If
the response is continuous and the predictors are categorical, analysis of variance
is often employed. If the response is categorical and the predictors are continuous,
logistic regression or discriminant analysis may be appropriate. If the response and the
predictors are both categorical, loglinear models are often used.

Regression with optimal scaling offers three scaling levels for each variable.
Combinations of these levels can account for a wide range of nonlinear relationships
for which any single “standard” method is ill-suited. Consequently, optimal scaling
offers greater flexibility than the standard approaches with minimal added complexity.

In addition, nonlinear transformations of the predictors usually reduce the
dependencies among the predictors. If you compare the eigenvalues of the correlation
matrix for the predictors with the eigenvalues of the correlation matrix for the optimally
scaled predictors, the latter set will usually be less variable than the former. In other
words, in categorical regression, optimal scaling makes the larger eigenvalues of the
predictor correlation matrix smaller and the smaller eigenvalues larger.
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Categorical Principal Components Analysis

The use of Categorical Principal Components Analysis is most appropriate when you
want to account for patterns of variation in a single set of variables of mixed optimal
scaling levels. This technique attempts to reduce the dimensionality of a set of variables
while accounting for as much of the variation as possible. Scale values are assigned
to each category of every variable so that these values are optimal with respect to the
principal components solution. Objects in the analysis receive component scores based
on the quantified data. Plots of the component scores reveal patterns among the objects
in the analysis and can reveal unusual objects in the data. The solution of a categorical
principal components analysis maximizes the correlations of the object scores with
each of the quantified variables for the number of components (dimensions) specified.
An important application of categorical principal components is to examine
preference data, in which respondents rank or rate a number of items with respect to
preference. In the usual SPSS data configuration, rows are individuals, columns are
measurements for the items, and the scores across rows are preference scores (on a 0
to 10 scale, for example), making the data row-conditional. For preference data, you
may want to treat the individuals as variables. Using the Transpose procedure, you
can transpose the data. The raters become the variables, and all variables are declared
ordinal. There is no objection to using more variables than objects in CATPCA.

Relation to other Categories procedures. If all variables are declared multiple nominal,
categorical principal components analysis produces an analysis equivalent to a multiple
correspondence analysis run on the same variables. Thus, categorical principal
components analysis can be seen as a type of multiple correspondence analysis in
which some of the variables are declared ordinal or numerical.

Relation to standard techniques. If all variables are scaled on the numerical level,
categorical principal components analysis is equivalent to standard principal
components analysis.

More generally, categorical principal components analysis is an alternative to
computing the correlations between non-numerical scales and analyzing them using
a standard principal components or factor-analysis approach. Naive use of the usual
Pearson correlation coefficient as a measure of association for ordinal data can lead to
nontrivial bias in estimation of the correlations.
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Nonlinear Canonical Correlation Analysis

Nonlinear Canonical Correlation Analysis is a very general procedure with many
different applications. The goal of nonlinear canonical correlation analysis is to
analyze the relationships between two or more sets of variables instead of between the
variables themselves, as in principal components analysis. For example, you may have
two sets of variables, where one set of variables might be demographic background
items on a set of respondents and a second set might be responses to a set of attitude
items. The scaling levels in the analysis can be any mix of nominal, ordinal, and
numerical. Optimal scaling canonical correlation analysis determines the similarity
among the sets by simultaneously comparing the canonical variables from each set

to a compromise set of scores assigned to the objects.

Relation to other Categories procedures. If there are two or more sets of variables with
only one variable per set, optimal scaling canonical correlation analysis is equivalent to
optimal scaling principal components analysis. If all variables in a one-variable-per-set
analysis are multiple nominal, optimal scaling canonical correlation analysis is
equivalent to multiple correspondence analysis. If there are two sets of variables, one
of which contains only one variable, optimal scaling canonical correlation analysis is
equivalent to categorical regression with optimal scaling.

Relation to standard techniques. Standard canonical correlation analysis is a statistical
technique that finds a linear combination of one set of variables and a linear
combination of a second set of variables that are maximally correlated. Given this set
of linear combinations, canonical correlation analysis can find subsequent independent
sets of linear combinations, referred to as canonical variables, up to a maximum
number equal to the number of variables in the smaller set.

If there are two sets of variables in the analysis and all variables are defined to be
numerical, optimal scaling canonical correlation analysis is equivalent to a standard
canonical correlation analysis. Although SPSS does not have a canonical correlation
analysis procedure, many of the relevant statistics can be obtained from multivariate
analysis of variance.

Optimal scaling canonical correlation analysis has various other applications.

If you have two sets of variables and one of the sets contains a nominal variable
declared as single nominal, optimal scaling canonical correlation analysis results can
be interpreted in a similar fashion to regression analysis. If you consider the variable
to be multiple nominal, the optimal scaling analysis is an alternative to discriminant
analysis. Grouping the variables in more than two sets provides a variety of ways to
analyze your data.



12

Chapter 1

Correspondence Analysis

The goal of correspondence analysis is to make biplots for correspondence tables. In a
correspondence table, the row and column variables are assumed to represent unordered
categories; therefore, the nominal optimal scaling level is always used. Both variables
are inspected for their nominal information only. That is, the only consideration is
the fact that some objects are in the same category while others are not. Nothing is
assumed about the distance or order between categories of the same variable.

One specific use of correspondence analysis is the analysis of two-way contingency
tables. If a table has r active rows and ¢ active columns, the number of dimensions
in the correspondence analysis solution is the minimum of » minus 1 or ¢ minus 1,
whichever is less. In other words, you could perfectly represent the row categories or
the column categories of a contingency table in a space of dimensions. Practically
speaking, however, you would like to represent the row and column categories of a
two-way table in a low-dimensional space, say two dimensions, for the reason that
two-dimensional plots are more easily comprehensible than multidimensional spatial
representations.

When fewer than the maximum number of possible dimensions is used, the
statistics produced in the analysis describe how well the row and column categories
are represented in the low-dimensional representation. Provided that the quality of
representation of the two-dimensional solution is good, you can examine plots of
the row points and the column points to learn which categories of the row variable
are similar, which categories of the column variable are similar, and which row and
column categories are similar to each other.

Relation to other Categories procedures. Simple correspondence analysis is limited to
two-way tables. If there are more than two variables of interest, you can combine
variables to create interaction variables. For example, for the variables region, job,
and age, you can combine region and job to create a new variable rejob with the 12
categories shown in the following table. This new variable forms a two-way table with
age (12 rows, 4 columns), which can be analyzed in correspondence analysis.

Table 1-4
Combinations of region and job

Category Code Category Definition Category Code Category Definition
1 North, intern 7 East, intern
2 North, sales rep 8 East, sales rep

3 North, manager 9 East, manager
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Category Code Category Definition Category Code Category Definition

4 South, intern 10 West, intern
5 South, sales rep 11 West, sales rep
6 South, manager 12 West, manager

One shortcoming of this approach is that any pair of variables can be combined. We
can combine job and age, yielding another 12-category variable. Or we can combine
region and age, which results in a new 16-category variable. Each of these interaction
variables forms a two-way table with the remaining variable. Correspondence analyses
of these three tables will not yield identical results, yet each is a valid approach.
Furthermore, if there are four or more variables, two-way tables comparing an
interaction variable with another interaction variable can be constructed. The number
of possible tables to analyze can get quite large, even for a few variables. You can
select one of these tables to analyze, or you can analyze all of them. Alternatively,
the Multiple Correspondence Analysis procedure can be used to examine all of the
variables simultaneously without the need to construct interaction variables.

Relation to standard techniques. The SPSS Crosstabs procedure can also be used to
analyze contingency tables, with independence as a common focus in the analyses.
However, even in small tables, detecting the cause of departures from independence
may be difficult. The utility of correspondence analysis lies in displaying such patterns
for two-way tables of any size. If there is an association between the row and column
variables—that is, if the chi-square value is significant—correspondence analysis may
help reveal the nature of the relationship.

Multiple Correspondence Analysis

Multiple Correspondence Analysis tries to produce a solution in which objects within
the same category are plotted close together and objects in different categories are
plotted far apart. Each object is as close as possible to the category points of categories
that apply to the object. In this way, the categories divide the objects into homogeneous
subgroups. Variables are considered homogeneous when they classify objects in the
same categories into the same subgroups.

For a one-dimensional solution, multiple correspondence analysis assigns optimal
scale values (category quantifications) to each category of each variable in such a way
that overall, on average, the categories have maximum spread. For a two-dimensional
solution, multiple correspondence analysis finds a second set of quantifications of the
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categories of each variable unrelated to the first set, attempting again to maximize
spread, and so on. Because categories of a variable receive as many scorings as there
are dimensions, the variables in the analysis are assumed to be multiple nominal in
optimal scaling level.

Multiple correspondence analysis also assigns scores to the objects in the analysis
in such a way that the category quantifications are the averages, or centroids, of the
object scores of objects in that category.

Relation to other Categories procedures. Multiple correspondence analysis is also
known as homogeneity analysis or dual scaling. It gives comparable, but not identical,
results to correspondence analysis when there are only two variables. Correspondence
analysis produces unique output summarizing the fit and quality of representation of
the solution, including stability information. Thus, correspondence analysis is usually
preferable to multiple correspondence analysis in the two-variable case. Another
difference between the two procedures is that the input to multiple correspondence
analysis is a data matrix, where the rows are objects and the columns are variables,
while the input to correspondence analysis can be the same data matrix, a general
proximity matrix, or a joint contingency table, which is an aggregated matrix in which
both the rows and columns represent categories of variables. Multiple correspondence
analysis can also be thought of as principal components analysis of data scaled at the
multiple nominal level.

Relation to standard techniques. Multiple correspondence analysis can be thought of as
the analysis of a multiway contingency table. Multiway contingency tables can also be
analyzed with the SPSS Crosstabs procedure, but Crosstabs gives separate summary
statistics for each category of each control variable. With multiple correspondence
analysis, it is often possible to summarize the relationship between all of the variables
with a single two-dimensional plot. An advanced use of multiple correspondence
analysis is to replace the original category values with the optimal scale values from
the first dimension and perform a secondary multivariate analysis. Since multiple
correspondence analysis replaces category labels with numerical scale values, many
different procedures that require numerical data can be applied after the multiple
correspondence analysis. For example, the Factor Analysis procedure produces

a first principal component that is equivalent to the first dimension of multiple
correspondence analysis. The component scores in the first dimension are equal to
the object scores, and the squared component loadings are equal to the discrimination
measures. The second multiple correspondence analysis dimension, however, is not
equal to the second dimension of factor analysis.
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Multidimensional Scaling

The use of Multidimensional Scaling is most appropriate when the goal of your
analysis is to find the structure in a set of distance measures between a single set of
objects or cases. This is accomplished by assigning observations to specific locations
in a conceptual low-dimensional space so that the distances between points in the space
match the given (dis)similarities as closely as possible. The result is a least-squares
representation of the objects in that low-dimensional space, which, in many cases, will
help you further understand your data.

Relation to other Categories procedures. When you have multivariate data from which
you create distances and which you then analyze with multidimensional scaling,

the results are similar to analyzing the data using categorical principal components
analysis with object principal normalization. This kind of PCA is also known as
principal coordinates analysis.

Relation to standard techniques. The Categories Multidimensional Scaling procedure
(PROXSCAL) offers several improvements upon the scaling procedure available

in the Base system (ALSCAL). PROXSCAL offers an accelerated algorithm for
certain models and allows you to put restrictions on the common space. Moreover,
PROXSCAL attempts to minimize normalized raw stress rather than S-stress (also
referred to as strain). The normalized raw stress is generally preferred because it is a
measure based on the distances, while the S-stress is based on the squared distances.

Multidimensional Unfolding

The use of Multidimensional Unfolding is most appropriate when the goal of your
analysis is to find the structure in a set of distance measures between two sets of
objects (referred to as the row and column objects). This is accomplished by assigning
observations to specific locations in a conceptual low-dimensional space so that the
distances between points in the space match the given (dis)similarities as closely as
possible. The result is a least-squares representation of the row and column objects in
that low-dimensional space, which, in many cases, will help you further understand
your data.

Relation to other Categories procedures. If your data consist of distances between a
single set of objects (a square, symmetrical matrix), use Multidimensional Scaling.
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Relation to standard techniques. The Categories Multidimensional Unfolding procedure
(PREFSCAL) offers several improvements upon the unfolding functionality available
in the Base system (through ALSCAL). PREFSCAL allows you to put restrictions on
the common space; moreover, PREFSCAL attempts to minimize a penalized stress
measure that helps it to avoid degenerate solutions (to which older algorithms are
prone).

Aspect Ratio in Optimal Scaling Charts

Aspect ratio in optimal scaling plots is isotropic. In a two-dimensional plot, the
distance representing one unit in dimension 1 is equal to the distance representing one
unit in dimension 2. If you change the range of a dimension in a two-dimensional plot,
the system changes the size of the other dimension to keep the physical distances
equal. Isotropic aspect ratio cannot be overridden for the optimal scaling procedures.

Recommended Readings

See the following texts for general information on optimal scaling techniques:

Barlow, R. E., D. J. Bartholomew, D. J. Bremner, and H. D. Brunk. 1972. Statistical
inference under order restrictions. New York: John Wiley and Sons.

Benzécri, J. P. 1969. Statistical analysis as a tool to make patterns emerge from data.
In: Methodologies of Pattern Recognition, S. Watanabe, ed. New York: Academic
Press, 35-74.

Bishop, Y. M., S. E. Feinberg, and P. W. Holland. 1975. Discrete multivariate analysis.
Cambridge, Mass.: MIT Press.

De Leeuw, J. 1984. The Gifi system of nonlinear multivariate analysis. In: Data
Analysis and Informatics 111, E. Diday, et al., ed., 415-424.

De Leeuw, J. 1990. Multivariate analysis with optimal scaling. In: Progress in
Multivariate Analysis, S. DasGupta, and J. Sethuraman, eds. Calcutta: Indian
Statistical Institute.

De Leeuw, J., and J. Van Rijckevorsel. 1980. HOMALS and PRINCALS—Some
generalizations of principal components analysis. In: Data Analysis and Informatics,
E. Diday, et al., ed. Amsterdam: North-Holland, 231-242.
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De Leeuw, J., F. W. Young, and Y. Takane. 1976. Additive structure in qualitative data:
An alternating least squares method with optimal scaling features. Psychometrika,
41, 471-503.

Gifi, A. 1990. Nonlinear multivariate analysis. Chichester: John Wiley and Sons.

Heiser, W. J., and J. J. Meulman. 1995. Nonlinear methods for the analysis of
homogeneity and heterogeneity. In: Recent Advances in Descriptive Multivariate
Analysis, W. J. Krzanowski, ed. Oxford: OxfordUniversity Press, 51-89.

Israels, A. 1987. Eigenvalue techniques for qualitative data. Leiden: DSWO Press.

Krzanowski , W. J., and F. H. C. Marriott. 1994. Multivariate analysis: Part I,
distributions, ordination and inference. London: Edward Arnold.

Lebart, L., A. Morineau, and K. M. Warwick. 1984. Multivariate descriptive statistical
analysis. New York: John Wiley and Sons.

Max, J. 1960. Quantizing for minimum distortion. Proceedings IEEE (Information
Theory), 6, 7-12.

Meulman, J. J. 1986. A distance approach to nonlinear multivariate analysis. Leiden:
DSWO Press.

Meulman, J. J. 1992. The integration of multidimensional scaling and multivariate
analysis with optimal transformations of the variables. Psychometrika, 57, 539-565.

Nishisato, S. 1980. Analysis of categorical data: Dual scaling and its applications.
Toronto: University of Toronto Press.

Nishisato, S. 1994. Elements of dual scaling: An introduction to practical data
analysis. Hillsdale, N.J.: Lawrence Erlbaum Associates, Inc.

Rao, C. R. 1973. Linear statistical inference and its applications, 2nd ed. New York:
John Wiley and Sons.

Rao, C. R. 1980. Matrix approximations and reduction of dimensionality in
multivariate statistical analysis. In: Multivariate Analysis, Vol. 5, P. R. Krishnaiah,
ed. Amsterdam: North-Holland, 3-22.

Roskam, E. E. 1968. Metric analysis of ordinal data in psychology. Voorschoten:
VAM.

Shepard, R. N. 1966. Metric structures in ordinal data. Journal of Mathematical
Psychology, 3, 287-315.
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Wolter, K. M. 1985. Introduction to variance estimation. Berlin: Springer-Verlag.

Young, F. W. 1981. Quantitative analysis of qualitative data. Psychometrika, 46,
357-387.
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Categorical Regression (CATREG)

Categorical regression quantifies categorical data by assigning numerical values to
the categories, resulting in an optimal linear regression equation for the transformed
variables. Categorical regression is also known by the acronym CATREG, for
categorical regression.

Standard linear regression analysis involves minimizing the sum of squared
differences between a response (dependent) variable and a weighted combination of
predictor (independent) variables. Variables are typically quantitative, with (nominal)
categorical data recoded to binary or contrast variables. As a result, categorical
variables serve to separate groups of cases, and the technique estimates separate
sets of parameters for each group. The estimated coefficients reflect how changes
in the predictors affect the response. Prediction of the response is possible for any
combination of predictor values.

An alternative approach involves regressing the response on the categorical
predictor values themselves. Consequently, one coefficient is estimated for each
variable. However, for categorical variables, the category values are arbitrary. Coding
the categories in different ways yield different coefficients, making comparisons across
analyses of the same variables difficult.

CATREG extends the standard approach by simultaneously scaling nominal,
ordinal, and numerical variables. The procedure quantifies categorical variables so that
the quantifications reflect characteristics of the original categories. The procedure
treats quantified categorical variables in the same way as numerical variables. Using
nonlinear transformations allow variables to be analyzed at a variety of levels to find
the best-fitting model.

Example. Categorical regression could be used to describe how job satisfaction depends
on job category, geographic region, and amount of travel. You might find that high
levels of satisfaction correspond to managers and low travel. The resulting regression
equation could be used to predict job satisfaction for any combination of the three
independent variables.

19
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Statistics and plots. Frequencies, regression coefficients, ANOVA table, iteration
history, category quantifications, correlations between untransformed predictors,
correlations between transformed predictors, residual plots, and transformation plots.

Data. CATREG operates on category indicator variables. The category indicators
should be positive integers. You can use the Discretization dialog box to convert
fractional-value variables and string variables into positive integers.

Assumptions. Only one response variable is allowed, but the maximum number of
predictor variables is 200. The data must contain at least three valid cases, and the
number of valid cases must exceed the number of predictor variables plus one.

Related procedures. CATREG is equivalent to categorical canonical correlation analysis
with optimal scaling (OVERALS) with two sets, one of which contains only one
variable. Scaling all variables at the numerical level corresponds to standard multiple
regression analysis.

To Obtain a Categorical Regression

From the menus choose:

Analyze
Regression
Optimal Scaling...

Figure 2-1
Categorical Regression dialog box

Il Categorical Regression

Dependent Varable:

- IpreflSlene ordinal 2 2)
[efine Scale... |

Independent Varable(s):

Define Scale... |

oK | Paste | Reset | cancal | Hep
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» Select the dependent variable and independent variable(s).

» Click OK.

Optionally, change the scaling level for each variable.

Define Scale in Categorical Regression

You can set the optimal scaling level for the dependent and independent variables. By
default, they are scaled as second-degree monotonic splines (ordinal) with two interior
knots. Additionally, you can set the weight for analysis variables.

Figure 2-2
Define Scale dialog box

Categorical Regrezzion: Define Scale E
— Optimal Sealing Level m
o : p—— | Continue |

;

C él| £ Nominal Cancel |
" Mumeric

Help |
— Spline

Degree: I2 Interior Knots: |2

Optimal Scaling Level. You can also select the scaling level for quantifying each variable.

m  Spline Ordinal. The order of the categories of the observed variable is preserved in
the optimally scaled variable. Category points will be on a straight line (vector)
through the origin. The resulting transformation is a smooth monotonic piecewise
polynomial of the chosen degree. The pieces are specified by the user-specified
number and procedure-determined placement of the interior knots.

m  Spline Nominal. The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The order
of the categories of the observed variable is not preserved. Category points will
be on a straight line (vector) through the origin. The resulting transformation is
a smooth, possibly nonmonotonic, piecewise polynomial of the chosen degree.
The pieces are specified by the user-specified number and procedure-determined
placement of the interior knots.
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m  Ordinal. The order of the categories of the observed variable is preserved in the
optimally scaled variable. Category points will be on a straight line (vector)
through the origin. The resulting transformation fits better than the spline ordinal
transformation but is less smooth.

®  Nominal. The only information in the observed variable that is preserved in the
optimally scaled variable is the grouping of objects in categories. The order of the
categories of the observed variable is not preserved. Category points will be on a
straight line (vector) through the origin. The resulting transformation fits better
than the spline nominal transformation but is less smooth.

B Numeric. Categories are treated as ordered and equally spaced (interval level). The
order of the categories and the equal distances between category numbers of the
observed variable are preserved in the optimally scaled variable. Category points
will be on a straight line (vector) through the origin. When all variables are at the
numeric level, the analysis is analogous to standard principal components analysis.

Categorical Regression Discretization

The Discretization dialog box allows you to select a method of recoding your
variables. Fractional-value variables are grouped into seven categories (or into the
number of distinct values of the variable if this number is less than seven) with an
approximately normal distribution unless otherwise specified. String variables are
always converted into positive integers by assigning category indicators according to
ascending alphanumeric order. Discretization for string variables applies to these
integers. Other variables are left alone by default. The discretized variables are then
used in the analysis.
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Figure 2-3
Discretization dialog box

Categorical Regression: Discretization

Wariables:

:pref(H e

package|lnspecified) Cancel
brand[Unspecified)
price|dnzpecified) Help
zeal[Unspecified)
money[lInzpecified)

LContinue

i

ethod: Rarnking

Change |

= Grouping
& Humber of cateqories: I?

Distribution: ) Normal € Wniform

€ Equal interals: I

Method. Choose between grouping, ranking, and multiplying.

m  Grouping. Recode into a specified number of categories or recode by interval.

®  Ranking. The variable is discretized by ranking the cases.

®  Multiplying. The current values of the variable are standardized, multiplied by 10,
rounded, and have a constant added so that the lowest discretized value is 1.

Grouping. The following options are available when discretizing variables by grouping:

®  Number of categories. Specify a number of categories and whether the values of
the variable should follow an approximately normal or uniform distribution across
those categories.

m  Equal intervals. Variables are recoded into categories defined by these equally sized
intervals. You must specify the length of the intervals.

Categorical Regression Missing Values

The Missing Values dialog box allows you to choose the strategy for handling missing
values in analysis variables and supplementary variables.
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Figure 2-4
Missing Values dialog box

Categorical Regression: Missing Yalues

r Miszing Walue Strategy _
Analysis Variables: Continue

prel ute mode Cancel |
package|Exchude]

brand|E sclude) Help |
price|Exchude]

zeallE rciude)
money(E #clude)

Change

— Strategy

™ Exclude objects with miszing values on thiz variable,
& |mpute mizsing values.

& Mode " Eghra categomy

Strategy. Choose to exclude objects with missing values (listwise deletion) or impute
missing values (active treatment).

m  Exclude objects with missing values on this variable. Objects with missing values on
the selected variable are excluded from the analysis. This strategy is not available
for supplementary variables.

® Impute missing values. Objects with missing values on the selected variable have
those values imputed. You can choose the method of imputation. Select Mode to
replace missing values with the most frequent category. When there are multiple
modes, the one with the smallest category indicator is used. Select Extra category
to replace missing values with the same quantification of an extra category. This
implies that objects with a missing value on this variable are considered to belong
to the same (extra) category.

Categorical Regression Options

The Options dialog box allows you to select the initial configuration style, specify
iteration and convergence criteria, select supplementary objects, and set the labeling
of plots.
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Figure 2-5
Options dialog box

Categorical Regression: Options m

 Supplementary Dbjects Iiitial Canfiguration——————————
o % MNumerical
e = = Cancel
Eirst; I ’7 " Random —l
Lagt: I ﬂl

r— Criteria

" Single case: I Corgergence: I.DIJEIEH
Add | M agirnum iberations: Imu

Change |
— Label Plotz By

FEmove | & Variable labelz or value labels
Lirnit far label length: IZD

" Variable names or values

Supplementary Objects. This allows you to specify the objects that you want to treat as
supplementary. Simply type the number of a supplementary object and click Add. You
cannot weight supplementary objects (specified weights are ignored).

Initial Configuration. If no variables are treated as nominal, select the Numerical
configuration. If at least one variable is treated as nominal, select the Random
configuration.

Criteria. You can specify the maximum number of iterations that the regression may go
through in its computations. You can also select a convergence criterion value. The
regression stops iterating if the difference in total fit between the last two iterations is
less than the convergence value or if the maximum number of iterations is reached.

Label Plots By. Allows you to specify whether variables and value labels or variable
names and values will be used in the plots. You can also specify a maximum length
for labels.

Categorical Regression Output

The Output dialog box allows you to select the statistics to display in the output.
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Figure 2-6
Output dialog box

Categornical Regression: Output m

) .. . LContinue
™ Comelations of ariginal variables

™ Iteration kistary v ANOVA
Help

Linalyziz Yanables: Category Quantifications:

¥ Coefficients [™ Comglations of ransformed variables Cancel |

pref

package

brand E
price

el

rrckEy
LDiescriptive Statistics:

[

Tables. Produces tables for:

Multiple R. Includes R2, adjusted R2, and adjusted R? taking the optimal scaling
into account.

Coefficients. This option gives three tables: a Coefficients table that includes betas,
standard error of the betas, ¢ values, and significance; a Coefficients-Optimal
Scaling table with the standard error of the betas taking the optimal scaling
degrees of freedom into account; and a table with the zero-order, part, and partial
correlation, Pratt’s relative importance measure for the transformed predictors, and
the tolerance before and after transformation.

Iteration history. For each iteration, including the starting values for the algorithm,
the multiple R and regression error are shown. The increase in multiple R is listed
starting from the first iteration.

Correlations of the original variables. A matrix showing the correlations between the
untransformed variables is displayed.

Correlations of the transformed variables. A matrix showing the correlations
between the transformed variables is displayed.

ANOVA. This option includes regression and residual sums of squares, mean
squares, and F. Two ANOVA tables are displayed: one with degrees of freedom
for the regression equal to the number of predictor variables and one with degrees
of freedom for the regression taking the optimal scaling into account.
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Category Quantifications. Tables showing the transformed values of the selected
variables are displayed.

Descriptive Statistics. Tables showing the frequencies, missing values, and modes
of the selected variables are displayed.

Categorical Regression Save

The Save dialog box allows you to save predicted values, residuals, and transformed

values to the active data set and/or save discretized data and transformed values to an
SPSS data file or data set.

m Data sets are available during the current session but are not available in subsequent
sessions unless you explicitly save them as data files. Data set names must adhere
to SPSS variable naming rules.

m  Filenames or data set names must be different for each type of data saved.

Figure 2-7
Save dialog box

Categorical Regression: Save

Save predicted values to the active datazet - Contirue

Dizcretized Data
Create discretized data

(3) Create a new datasst

Save [esiduals to the active dataset

Datazet name: dizcretized_data

() 'wite a new data file

Transformed Wanables
Save transfarmed wariables to the active datazet
Create transformed wariablas
(%) Create a news datasst
Datazet name; tranzformed_values

() 'Wite & news data file
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Categorical Regression Transformation Plots

The Plots dialog box allows you to specify the variables that will produce
transformation and residual plots.

Figure 2-8

Plots dialog box

Categorical Regression: Plots m
pref Transformation Plats: CortinLe |
package
brand Cancel |
price
zeal Hel
Moy P |

Residual Plots:

Transformation Plots. For each of these variables, the category quantifications are
plotted against the original category values. Empty categories appear on the horizontal
axis but do not affect the computations. These categories are identified by breaks in
the line connecting the quantifications.

Residual Plots. For each of these variables, residuals (computed for the dependent
variable predicted from all predictor variables except the predictor variable in question)
are plotted against category indicators and the optimal category quantifications
multiplied with beta against category indicators.

CATREG Command Additional Features

You can customize your categorical regression if you paste your selections into a
syntax window and edit the resulting CATREG command syntax. SPSS command
language also allows you to:

B Specify rootnames for the transformed variables when saving them to the active
data set (with the SAVE subcommand).

See the SPSS Command Syntax Reference for complete syntax information.
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Categorical Principal Components
Analysis (CATPCA)

This procedure simultaneously quantifies categorical variables while reducing the
dimensionality of the data. Categorical principal components analysis is also known
by the acronym CATPCA, for caregorical principal components analysis.

The goal of principal components analysis is to reduce an original set of variables
into a smaller set of uncorrelated components that represent most of the information
found in the original variables. The technique is most useful when a large number
of variables prohibits effective interpretation of the relationships between objects
(subjects and units). By reducing the dimensionality, you interpret a few components
rather than a large number of variables.

Standard principal components analysis assumes linear relationships between
numeric variables. On the other hand, the optimal-scaling approach allows variables
to be scaled at different levels. Categorical variables are optimally quantified in the
specified dimensionality. As a result, nonlinear relationships between variables can be
modeled.

Example. Categorical principal components analysis could be used to graphically
display the relationship between job category, job division, region, amount of travel
(high, medium, and low), and job satisfaction. You might find that two dimensions
account for a large amount of variance. The first dimension might separate job
category from region, whereas the second dimension might separate job division from
amount of travel. You also might find that high job satisfaction is related to a medium
amount of travel.

Statistics and plots. Frequencies, missing values, optimal scaling level, mode,
variance accounted for by centroid coordinates, vector coordinates, total per variable
and per dimension, component loadings for vector-quantified variables, category
quantifications and coordinates, iteration history, correlations of the transformed
variables and eigenvalues of the correlation matrix, correlations of the original
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variables and eigenvalues of the correlation matrix, object scores, category plots, joint
category plots, transformation plots, residual plots, projected centroid plots, object
plots, biplots, triplots, and component loadings plots.

Data. String variable values are always converted into positive integers by ascending
alphanumeric order. User-defined missing values, system-missing values, and values
less than 1 are considered missing; you can recode or add a constant to variables with
values less than 1 to make them nonmissing.

Assumptions. The data must contain at least three valid cases. The analysis is based
on positive integer data. The discretization option will automatically categorize a
fractional-valued variable by grouping its values into categories with a close to
“normal” distribution and will automatically convert values of string variables into
positive integers. You can specify other discretization schemes.

Related procedures. Scaling all variables at the numeric level corresponds to standard
principal components analysis. Alternate plotting features are available by using

the transformed variables in a standard linear principal components analysis. If all
variables have multiple nominal scaling levels, categorical principal components
analysis is identical to multiple correspondence analysis. If sets of variables are of
interest, categorical (nonlinear) canonical correlation analysis should be used.

To Obtain a Categorical Principal Components Analysis

From the menus choose:

Analyze
Data Reduction
Optimal Scaling...
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Figure 3-1
Optimal Scaling dialog box
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Figure 3-2
Categorical Principal Components dialog box
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» Select at least two analysis variables and specify the number of dimensions in the
solution.

» Click OK.

You may optionally specify supplementary variables, which are fitted into the solution
found, or labeling variables for the plots.

Define Scale and Weight in CATPCA

You can set the optimal scaling level for analysis variables and supplementary
variables. By default, they are scaled as second-degree monotonic splines (ordinal)
with two interior knots. Additionally, you can set the weight for analysis variables.
Figure 3-3

Define Scale and Weight dialog box

Categorical Principal Components: Define Scale and Weight [E3

o

Varizble weight:
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Variable weight. You can choose to define a weight for each variable. The value
specified must be a positive integer. The default value is 1.

Optimal Scaling Level. You can also select the scaling level to be used to quantify each
variable.

m  Spline ordinal. The order of the categories of the observed variable is preserved in
the optimally scaled variable. Category points will be on a straight line (vector)
through the origin. The resulting transformation is a smooth monotonic piecewise
polynomial of the chosen degree. The pieces are specified by the user-specified
number and procedure-determined placement of the interior knots.

m  Spline nominal. The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The order
of the categories of the observed variable is not preserved. Category points will
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be on a straight line (vector) through the origin. The resulting transformation is
a smooth, possibly nonmonotonic, piecewise polynomial of the chosen degree.
The pieces are specified by the user-specified number and procedure-determined
placement of the interior knots.

®  Multiple nominal. The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The order of
the categories of the observed variable is not preserved. Category points will be
in the centroid of the objects in the particular categories. Multiple indicates that
different sets of quantifications are obtained for each dimension.

®  Ordinal. The order of the categories of the observed variable is preserved in the
optimally scaled variable. Category points will be on a straight line (vector)
through the origin. The resulting transformation fits better than the spline ordinal
transformation but is less smooth.

®  Nominal. The only information in the observed variable that is preserved in the
optimally scaled variable is the grouping of objects in categories. The order of the
categories of the observed variable is not preserved. Category points will be on a
straight line (vector) through the origin. The resulting transformation fits better
than the spline nominal transformation but is less smooth.

B Numeric. Categories are treated as ordered and equally spaced (interval level). The
order of the categories and the equal distances between category numbers of the
observed variable are preserved in the optimally scaled variable. Category points
will be on a straight line (vector) through the origin. When all variables are at the
numeric level, the analysis is analogous to standard principal components analysis.

Categorical Principal Components Analysis Discretization

The Discretization dialog box allows you to select a method of recoding your
variables. Fractional-valued variables are grouped into seven categories (or into the
number of distinct values of the variable if this number is less than seven) with an
approximately normal distribution, unless specified otherwise. String variables are
always converted into positive integers by assigning category indicators according to
ascending alphanumeric order. Discretization for string variables applies to these
integers. Other variables are left alone by default. The discretized variables are then
used in the analysis.
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Figure 3-4
Discretization dialog box
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Method. Choose between grouping, ranking, and multiplying.
®  Grouping. Recode into a specified number of categories or recode by interval.
®  Ranking. The variable is discretized by ranking the cases.

®  Multiplying. The current values of the variable are standardized, multiplied by 10,
rounded, and have a constant added such that the lowest discretized value is 1.

Grouping. The following options are available when you are discretizing variables
by grouping:

®  Number of categories. Specify a number of categories and whether the values of
the variable should follow an approximately normal or uniform distribution across
those categories.

m  Equal intervals. Variables are recoded into categories defined by these equally sized
intervals. You must specify the length of the intervals.

Categorical Principal Components Analysis Missing Values

The Missing Values dialog box allows you to choose the strategy for handling missing
values in analysis variables and supplementary variables.
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Figure 3-5
Missing Values dialog box
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Strategy. Choose to exclude missing values (passive treatment), impute missing values
(active treatment), or exclude objects with missing values (listwise deletion).

Exclude missing values; for correlations impute after quantification. Objects with
missing values on the selected variable do not contribute to the analysis for this
variable. If all variables are given passive treatment, then objects with missing
values on all variables are treated as supplementary. If correlations are specified in
the Output dialog box, then (after analysis) missing values are imputed with the
most frequent category, or mode, of the variable for the correlations of the original
variables. For the correlations of the optimally scaled variables, you can choose
the method of imputation. Select Mode to replace missing values with the mode of
the optimally scaled variable. Select Extra category to replace missing values with
the quantification of an extra category. This implies that objects with a missing
value on this variable are considered to belong to the same (extra) category.

Impute missing values. Objects with missing values on the selected variable have

those values imputed. You can choose the method of imputation. Select Mode to
replace missing values with the most frequent category. When there are multiple
modes, the one with the smallest category indicator is used. Select Extra category
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Categorical Principal Components Analysis Options

to replace missing values with the same quantification of an extra category. This
implies that objects with a missing value on this variable are considered to belong

to the same (extra) category.

m  Exclude objects with missing values on this variable. Objects with missing values on
the selected variable are excluded from the analysis. This strategy is not available

for supplementary variables.

The Options dialog box allows you to select the initial configuration, specify iteration
and convergence criteria, select a normalization method, choose the method for
labeling plots, and specify supplementary objects.

Figure 3-6
Options dialog box
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Supplementary Objects. Specify the case number of the object, or the first and last case
numbers of a range of objects, that you want to make supplementary and then click
Add. Continue until you have specified all of your supplementary objects. If an object
is specified as supplementary, then case weights are ignored for that object.

Normalization Method. You can specify one of five options for normalizing the object
scores and the variables. Only one normalization method can be used in a given
analysis.

m  Variable Principal. This option optimizes the association between variables. The
coordinates of the variables in the object space are the component loadings
(correlations with principal components, such as dimensions and object scores).
This is useful when you are primarily interested in the correlation between the
variables.

m  Object Principal. This option optimizes distances between objects. This is useful
when you are primarily interested in differences or similarities between the objects.

®  Symmetrical. Use this normalization option if you are primarily interested in the
relation between objects and variables.

® Independent. Use this normalization option if you want to examine distances
between objects and correlations between variables separately.

m  Custom. You can specify any real value in the closed interval [-1, 1]. A value of 1
is equal to the Object Principal method, a value of 0 is equal to the Symmetrical
method, and a value of —1 is equal to the Variable Principal method. By specifying
a value greater than —1 and less than 1, you can spread the eigenvalue over both
objects and variables. This method is useful for making a tailor-made biplot or
triplot.

Criteria. You can specify the maximum number of iterations the procedure can go
through in its computations. You can also select a convergence criterion value. The
algorithm stops iterating if the difference in total fit between the last two iterations is
less than the convergence value or if the maximum number of iterations is reached.

Label Plots By. Allows you to specify whether variables and value labels or variable
names and values will be used in the plots. You can also specify a maximum length
for labels.

Plot Dimensions. Allows you to control the dimensions displayed in the output.
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m  Display all dimensions in the solution. All dimensions in the solution are displayed
in a scatterplot matrix.

m  Restrict the number of dimensions. The displayed dimensions are restricted to
plotted pairs. If you restrict the dimensions, you must select the lowest and highest
dimensions to be plotted. The lowest dimension can range from 1 to the number
of dimensions in the solution minus 1 and is plotted against higher dimensions.
The highest dimension value can range from 2 to the number of dimensions in the
solution and indicates the highest dimension to be used in plotting the dimension
pairs. This specification applies to all requested multidimensional plots.

Configuration. You can read data from a file containing the coordinates of a
configuration. The first variable in the file should contain the coordinates for the
first dimension, the second variable should contain the coordinates for the second
dimension, and so on.

m [Initial. The configuration in the file specified will be used as the starting point of
the analysis.

m  Fixed. The configuration in the file specified will be used to fit in the variables.
The variables that are fitted in must be selected as analysis variables, but because
the configuration is fixed, they are treated as supplementary variables (so they do
not need to be selected as supplementary variables).

Categorical Principal Components Analysis Output

The Output dialog box allows you to produce tables for object scores, component
loadings, iteration history, correlations of original and transformed variables, the
variance accounted for per variable and per dimension, category quantifications for
selected variables, and descriptive statistics for selected variables.
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Figure 3-7
Output dialog box
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Object scores. Displays the object scores and has the following options:

m Include Categories Of. Displays the category indicators of the analysis variables
selected.

m Label Object Scores By. From the list of variables specified as labeling variables,
you can select one to label the objects.

Component loadings. Displays the component loadings for all variables that were not
given multiple nominal scaling levels.

Iteration history. For each iteration, the variance accounted for, loss, and increase in
variance accounted for are shown.

Correlations of original variables. Shows the correlation matrix of the original variables
and the eigenvalues of that matrix.

Correlations of transformed variables. Shows the correlation matrix of the transformed
(optimally scaled) variables and the eigenvalues of that matrix.
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Variance accounted for. Displays the amount of variance accounted for by centroid
coordinates, vector coordinates, and total (centroid and vector coordinates combined)
per variable and per dimension.

Category Quantifications. Gives the category quantifications and coordinates for each
dimension of the variable(s) selected.

Descriptive Statistics. Displays frequencies, number of missing values, and mode of
the variable(s) selected.

Categorical Principal Components Analysis Save

The Save dialog box allows you to save discretized data, object scores, transformed
values, and approximations to an SPSS data file or data set. You can also save
transformed values, object scores, and approximations to the active data set.

B Data sets are available during the current session but are not available in subsequent
sessions unless you explicitly save them as data files. Data set names must adhere
to SPSS variable naming rules.

m  Filenames or data set names must be different for each type of data saved.

m If you save object scores or transformed values to the active data set, you can
specify the number of multiple nominal dimensions.
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Figure 3-8
Save dialog box
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Categorical Principal Components Analysis Object Plots

The Object and Variable Plots dialog box allows you to specify the types of plots
desired and the variables for which plots will be produced.
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Figure 3-9
Object and Variable Plots dialog box
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Object points. A plot of the object points is displayed.

Objects and variables (biplot). The object points are plotted with your choice of the
variable coordinates—component loadings or variable centroids.

Objects, loadings, and centroids (triplot). The object points are plotted with the centroids
of multiple nominal-scaling-level variables and the component loadings of other
variables.

Biplot and Triplot Variables. You can choose to use all variables for the biplots and
triplots or select a subset.

Label Objects. You can choose to have objects labeled with the categories of selected
variables (you may choose category indicator values or value labels in the Options
dialog box) or with their case numbers. One plot is produced per variable if Variable is
selected.
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Categorical Principal Components Analysis Category Plots

The Category Plots dialog box allows you to specify the types of plots desired and the
variables for which plots will be produced.

Figure 3-10

Category Plots dialog box
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Category Plots. For each variable selected, a plot of the centroid and vector coordinates
is plotted. For variables with multiple nominal scaling levels, categories are in the
centroids of the objects in the particular categories. For all other scaling levels,
categories are on a vector through the origin.

Joint Category Plots. This is a single plot of the centroid and vector coordinates of
each selected variable.

Transformation Plots. Displays a plot of the optimal category quantifications versus the
category indicators. You can specify the number of dimensions desired for variables
with multiple nominal scaling levels; one plot will be generated for each dimension.
You can also choose to display residual plots for each variable selected.
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Project Centroids Of. You may choose a variable and project its centroids onto selected
variables. Variables with multiple nominal scaling levels cannot be selected to project
on. When this plot is requested, a table with the coordinates of the projected centroids
is also displayed.

Categorical Principal Components Analysis Loading Plots

The Loading Plots dialog box allows you to specify the variables that will be included
in the plot, and whether or not to include centroids in the plot.

Figure 3-11
Loading Plots dialog box
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Display component loadings. If selected, a plot of the component loadings is displayed.

Loading Variables. You can choose to use all variables for the component loadings
plot or select a subset.

Include centroids. Variables with multiple nominal scaling levels do not have
component loadings, but you may choose to include the centroids of those variables in
the plot. You can choose to use all multiple nominal variables or select a subset.
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CATPCA Command Additional Features

You can customize your categorical principal components analysis if you paste your
selections into a syntax window and edit the resulting CATPCA command syntax. SPSS
command language also allows you to:

B Specify rootnames for the transformed variables, object scores, and approximations
when saving them to the active data set (with the SAVE subcommand).

B Specify a maximum length for labels for each plot separately (with the PLOT
subcommand).

B Specify a separate variable list for residual plots (with the PLOT subcommand).

See the SPSS Command Syntax Reference for complete syntax information.
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Nonlinear Canonical Correlation
Analysis (OVERALS)

Nonlinear canonical correlation analysis corresponds to categorical canonical
correlation analysis with optimal scaling. The purpose of this procedure is to determine
how similar sets of categorical variables are to one another. Nonlinear canonical
correlation analysis is also known by the acronym OVERALS.

Standard canonical correlation analysis is an extension of multiple regression,
where the second set does not contain a single response variable but instead contain
multiple response variables. The goal is to explain as much as possible of the variance
in the relationships among two sets of numerical variables in a low dimensional
space. Initially, the variables in each set are linearly combined such that the linear
combinations have a maximal correlation. Given these combinations, subsequent linear
combinations are determined that are uncorrelated with the previous combinations and
that have the largest correlation possible.

The optimal scaling approach expands the standard analysis in three crucial ways.
First, OVERALS allows more than two sets of variables. Second, variables can be
scaled as either nominal, ordinal, or numerical. As a result, nonlinear relationships
between variables can be analyzed. Finally, instead of maximizing correlations
between the variable sets, the sets are compared to an unknown compromise set that
is defined by the object scores.

Example. Categorical canonical correlation analysis with optimal scaling could be
used to graphically display the relationship between one set of variables containing
job category and years of education and another set of variables containing region of
residence and gender. You might find that years of education and region of residence
discriminate better than the remaining variables. You might also find that years of
education discriminates best on the first dimension.

47
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Statistics and plots. Frequencies, centroids, iteration history, object scores, category
quantifications, weights, component loadings, single and multiple fit, object scores
plots, category coordinates plots, component loadings plots, category centroids plots,
transformation plots.

Data. Use integers to code categorical variables (nominal or ordinal scaling level). To
minimize output, use consecutive integers beginning with 1 to code each variable.
Variables that are scaled at the numerical level should not be recoded to consecutive
integers. To minimize output, for each variable that is scaled at the numerical level,
subtract the smallest observed value from every value and add 1. Fractional values
are truncated after the decimal.

Assumptions. Variables can be classified into two or more sets. Variables in the
analysis are scaled as multiple nominal, single nominal, ordinal, or numerical. The
maximum number of dimensions that are used in the procedure depends on the optimal
scaling level of the variables. If all variables are specified as ordinal, single nominal,
or numerical, the maximum number of dimensions is the lesser of the following two
values: the number of observations minus 1 or the total number of variables. However,
if only two sets of variables are defined, the maximum number of dimensions is the
number of variables in the smaller set. If some variables are multiple nominal, the
maximum number of dimensions is the total number of multiple nominal categories
plus the number of nonmultiple nominal variables minus the number of multiple
nominal variables. For example, if the analysis involves five variables, one of which is
multiple nominal with four categories, the maximum number of dimensions is (4 + 4
— 1), or 7. If you specify a number that is greater than the maximum, the maximum
value is used.

Related procedures. If each set contains one variable, nonlinear canonical correlation
analysis is equivalent to principal components analysis with optimal scaling. If
each of these variables is multiple nominal, the analysis corresponds to multiple
correspondence analysis. If two sets of variables are involved, and one of the sets
contains only one variable, the analysis is identical to categorical regression with
optimal scaling.

To Obtain a Nonlinear Canonical Correlation Analysis

From the menus choose:

Analyze
Data Reduction
Optimal Scaling...
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Figure 4-1
Optimal Scaling dialog box
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Figure 4-2

Nonlinear Canonical Correlation Analysis (OVERALS) dialog box
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Define at least two sets of variables. Select the variable(s) that you want to include in
the first set. To move to the next set, click Next, and select the variables that you want
to include in the second set. You can add additional sets as desired. Click Previous to
return to the previously defined variable set.

Define the value range and measurement scale (optimal scaling level) for each selected
variable.

Click OK.

Optionally:

Select one or more variables to provide point labels for object scores plots. Each
variable produces a separate plot, with the points labeled by the values of that
variable. You must define a range for each of these plot label variables. When you
are using the dialog box, a single variable cannot be used both in the analysis and
as a labeling variable. If labeling the object scores plot with a variable that is used
in the analysis is desired, use the Compute facility (available from the Transform
menu) to create a copy of that variable. Use the new variable to label the plot.
Alternatively, command syntax can be used.

Specify the number of dimensions that you want in the solution. In general, choose
as few dimensions as needed to explain most of the variation. If the analysis
involves more than two dimensions, SPSS produces three-dimensional plots of the
first three dimensions. Other dimensions can be displayed by editing the chart.

Define Range and Scale

Figure 4-3
Define Range and Scale dialog box
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You must define a range for each variable. The maximum value that is specified must
be an integer. Fractional data values are truncated in the analysis. A category value
that is outside of the specified range is ignored in the analysis. To minimize output,
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use the Automatic Recode facility (available from the Transform menu) to create
consecutive categories beginning with 1 for variables that are treated as nominal or
ordinal. Recoding to consecutive integers is not recommended for variables that are
scaled at the numerical level. To minimize output for variables that are treated as
numerical, for each variable, subtract the minimum value from every value and add 1.

You must also select the scaling to be used to quantify each variable.

®  Ordinal. The order of the categories of the observed variable is preserved in the
quantified variable.

m  Single nominal. In the quantified variable, objects in the same category receive
the same score.

Multiple nominal. The quantifications can be different for each dimension.

Discrete numeric. Categories are treated as ordered and equally spaced. The
differences between category numbers and the order of the categories of the
observed variable are preserved in the quantified variable.

Define Range

Figure 4-4
Define Range dialog box
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You must define a range for each variable. The maximum value that is specified must
be an integer. Fractional data values are truncated in the analysis. A category value
that is outside of the specified range is ignored in the analysis. To minimize output,
use the Automatic Recode facility (available from the Transform menu) to create
consecutive categories beginning with 1.

You must also define a range for each variable that is used to label the object scores
plots. However, labels for categories with data values that are outside of the defined
range for the variable do appear on the plots.
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Nonlinear Canonical Correlation Analysis Options

The Options dialog box allows you to select optional statistics and plots, save object
scores as new variables in the active data set, specify iteration and convergence criteria,
and specify an initial configuration for the analysis.

Figure 4-5
Options dialog box
OVERALS: Options

¥ Frequencies ¥ Single and muttiple fit
[ Centroids ¥ Category guantifications Cancel |
[ teration history [~ Ohject scores Help
[ Weights and component loadings
r— Plot
[ Category coordinates v Category centroids
¥ Object scores ¥ Transformations

[+ Component loadings

[ Save object scores v Use random initial corfiguration:
r—Criteria
Maimum iterations: |1 Do

Convergence: I.DDDD‘I 'I

Display. Available statistics include marginal frequencies (counts), centroids, iteration
history, weights and component loadings, category quantifications, object scores, and
single and multiple fit statistics.

B Centroids. Category quantifications, and the projected and the actual averages of
the object scores for the objects (cases) included in each set for those belonging
to the same category of the variable.

m  Weights and Component Loadings. The regression coefficients in each dimension
for every quantified variable in a set, where the object scores are regressed on the
quantified variables, and the projection of the quantified variable in the object
space. Provides an indication of the contribution each variable makes to the
dimension within each set.

m  Single and Multiple Fit. Measures of goodness of fit of the single- and
multiple-category coordinates/category quantifications with respect to the objects.
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m Category Quantifications. Optimal scale values assigned to the categories of a
variable.

m  Object Scores. Optimal score assigned to an object (case) in a particular dimension.

Plot. You can produce plots of category coordinates, object scores, component loadings,
category centroids, and transformations.

Save object scores. You can save the object scores as new variables in the active
data set. Object scores are saved for the number of dimensions that are specified
in the main dialog box.

Use random initial configuration. A random initial configuration should be used if some
or all of the variables are single nominal. If this option is not selected, a nested initial
configuration is used.

Criteria. You can specify the maximum number of iterations that the nonlinear
canonical correlation analysis can go through in its computations. You can also select a
convergence criterion value. The analysis stops iterating if the difference in total fit
between the last two iterations is less than the convergence value or if the maximum
number of iterations is reached.

OVERALS Command Additional Features

You can customize your nonlinear canonical correlation analysis if you paste your
selections into a syntax window and edit the resulting OVERALS command syntax.
SPSS command language also allows you to:

m  Specify the dimension pairs to be plotted, rather than plotting all extracted
dimensions (using theNDIM keyword on the PLOT subcommand).

m  Specify the number of value label characters that are used to label points on the
plots (with thePLOT subcommand).

m  Designate more than five variables as labeling variables for object scores plots
(with thePLOT subcommand).

B Select variables that are used in the analysis as labeling variables for the object
scores plots (with the PLOT subcommand).

B Select variables to provide point labels for the quantification score plot (with the
PLOT subcommand).

B Specify the number of cases to be included in the analysis if you do not want to use
all cases in the active data set (with the NOBSERVATIONS subcommand).
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m  Specify rootnames for variables created by saving object scores (with the SAVE
subcommand).

m  Specify the number of dimensions to be saved, rather than saving all extracted
dimensions (with the SAVE subcommand).

B Write category quantifications to a matrix file (using the MATRIX subcommand).

B Produce low-resolution plots that may be easier to read than the usual
high-resolution plots (using the SET command).

B Produce centroid and transformation plots for specified variables only (with the
PLOT subcommand).

See the SPSS Command Syntax Reference for complete syntax information.
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Correspondence Analysis

One of the goals of correspondence analysis is to describe the relationships between
two nominal variables in a correspondence table in a low-dimensional space,

while simultaneously describing the relationships between the categories for each
variable. For each variable, the distances between category points in a plot reflect the
relationships between the categories with similar categories plotted close to each other.
Projecting points for one variable on the vector from the origin to a category point for
the other variable describe the relationship between the variables.

An analysis of contingency tables often includes examining row and column profiles
and testing for independence via the chi-square statistic. However, the number of
profiles can be quite large, and the chi-square test does not reveal the dependence
structure. The Crosstabs procedure offers several measures of association and tests of
association but cannot graphically represent any relationships between the variables.

Factor analysis is a standard technique for describing relationships between
variables in a low-dimensional space. However, factor analysis requires interval
data, and the number of observations should be five times the number of variables.
Correspondence analysis, on the other hand, assumes nominal variables and can
describe the relationships between categories of each variable, as well as the
relationship between the variables. In addition, correspondence analysis can be used to
analyze any table of positive correspondence measures.

Example. Correspondence analysis could be used to graphically display the relationship
between staff category and smoking habits. You might find that with regard to
smoking, junior managers differ from secretaries, but secretaries do not differ from
senior managers. You might also find that heavy smoking is associated with junior
managers, whereas light smoking is associated with secretaries.

Statistics and plots. Correspondence measures, row and column profiles, singular
values, row and column scores, inertia, mass, row and column score confidence
statistics, singular value confidence statistics, transformation plots, row point plots,
column point plots, and biplots.
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Data. Categorical variables to be analyzed are scaled nominally. For aggregated data or
for a correspondence measure other than frequencies, use a weighting variable with
positive similarity values. Alternatively, for table data, use syntax to read the table.

Assumptions. The maximum number of dimensions used in the procedure depends

on the number of active rows and column categories and the number of equality
constraints. If no equality constraints are used and all categories are active, the
maximum dimensionality is one fewer than the number of categories for the variable
with the fewest categories. For example, if one variable has five categories and the
other has four, the maximum number of dimensions is three. Supplementary categories
are not active. For example, if one variable has five categories, two of which are
supplementary, and the other variable has four categories, the maximum number of
dimensions is two. Treat all sets of categories that are constrained to be equal as one
category. For example, if a variable has five categories, three of which are constrained
to be equal, that variable should be treated as having three categories when determining
the maximum dimensionality. Two of the categories are unconstrained, and the third
category corresponds to the three constrained categories. If you specify a number of
dimensions greater than the maximum, the maximum value is used.

Related procedures. If more than two variables are involved, use multiple
correspondence analysis. If the variables should be scaled ordinally, use categorical
principal components analysis.

To Obtain a Correspondence Analysis

From the menus choose:

Analyze
Data Reduction
Correspondence Analysis...
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Define Row Range in Correspondence Analysis

Figure 5-1
Correspondence Analysis dialog box
Il Comespondence Analysis
#» Smoking [smokz] Row: (], |
it st |
®CDU E Easte |
Define Range... |
Reset
Column:
[ Cancel |
[efine Hange... | Help |
Model.. | Swtiscs. | Pits.. |

Select a row variable.
Select a column variable.
Define the ranges for the variables.

Click OK.

Correspondence Analysis

You must define a range for the row variable. The minimum and maximum values
specified must be integers. Fractional data values are truncated in the analysis. A
category value that is outside of the specified range is ignored in the analysis.
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Figure 5-2
Define Row Range dialog box
Comespondence Analysis: Define Row Range E2
—Category range for row vanable: staff —————————— T |
Minimum value: I‘I Cancel |
Update
Maximum value: |5 Help
—Category Constraints
% & None
4 (" Categories must be equal
5 " Category is supplemental

All categories are initially unconstrained and active. You can constrain row categories
to equal other row categories, or you can define a row category as supplementary.

m Categories must be equal. Categories must have equal scores. Use equality
constraints if the obtained order for the categories is undesirable or counterintuitive.
The maximum number of row categories that can be constrained to be equal is
the total number of active row categories minus 1. To impose different equality
constraints on sets of categories, use syntax. For example, use syntax to constrain
categories 1 and 2 to be equal and categories 3 and 4 to be equal.

m Category is supplemental. Supplementary categories do not influence the analysis
but are represented in the space defined by the active categories. Supplementary
categories play no role in defining the dimensions. The maximum number of
supplementary row categories is the total number of row categories minus 2.

Define Column Range in Correspondence Analysis

You must define a range for the column variable. The minimum and maximum values
specified must be integers. Fractional data values are truncated in the analysis. A
category value that is outside of the specified range is ignored in the analysis.
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Figure 5-3
Define Column Range dialog box
Comespondence Analysis: Define Column Range E2
—Category range for column variable: smoke ——————— T |
Minimum value: I‘I Cancel |
Update
Maximum value: |4 Help
—Category Constraints
% & None
4 (" Categories must be equal

" Category is supplemental

All categories are initially unconstrained and active. You can constrain column

categories to equal other column categories, or you can define a column category
as supplementary.

m Categories must be equal. Categories must have equal scores. Use equality
constraints if the obtained order for the categories is undesirable or counterintuitive.
The maximum number of column categories that can be constrained to be equal is
the total number of active column categories minus 1. To impose different equality
constraints on sets of categories, use syntax. For example, use syntax to constrain
categories 1 and 2 to be equal and categories 3 and 4 to be equal.

m Category is supplemental. Supplementary categories do not influence the analysis
but are represented in the space defined by the active categories. Supplementary
categories play no role in defining the dimensions. The maximum number of
supplementary column categories is the total number of column categories minus 2.

Correspondence Analysis Model

The Model dialog box allows you to specify the number of dimensions, the distance
measure, the standardization method, and the normalization method.
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Figure 5-4
Model dialog box

Comespondence Analysis: Model

Dimensions in solution: Iz_

r Distance Measure =
& Chi square

Hel
" Euclidean E

r— Standardization Method
' Fow and column means are removed

) B meatis are (emeved
) Calumim means ae eneyed
) Hiap totals are equalized and means are remeyed

£ Eallimr tatals are equalizedlandimeans areremoyed

MNomalization Method
% Symmetrical " Row principal " Custom: IC
" Principal ¢~ Column principal

Dimensions in solution. Specify the number of dimensions. In general, choose as few
dimensions as needed to explain most of the variation. The maximum number of
dimensions depends on the number of active categories used in the analysis and on the
equality constraints. The maximum number of dimensions is the smaller of:

B The number of active row categories minus the number of row categories
constrained to be equal, plus the number of constrained row category sets.

B The number of active column categories minus the number of column categories
constrained to be equal, plus the number of constrained column category sets.
Distance Measure. You can select the measure of distance among the rows and columns

of the correspondence table. Choose one of the following alternatives:

m  Chi square. Use a weighted profile distance, where the weight is the mass of the
rows or columns. This measure is required for standard correspondence analysis.

m  Euclidean. Use the square root of the sum of squared differences between pairs
of rows and pairs of columns.
Standardization Method. Choose one of the following alternatives:

B Row and column means are removed. Both the rows and columns are centered. This
method is required for standard correspondence analysis.

B Row means are removed. Only the rows are centered.
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Column means are removed. Only the columns are centered.

Row totals are equalized and means are removed. Before centering the rows, the row
margins are equalized.

Column totals are equalized and means are removed. Before centering the columns,
the column margins are equalized.

Normalization Method. Choose one of the following alternatives:

Symmetrical. For each dimension, the row scores are the weighted average of the
column scores divided by the matching singular value, and the column scores are
the weighted average of row scores divided by the matching singular value. Use
this method if you want to examine the differences or similarities between the
categories of the two variables.

Principal. The distances between row points and column points are approximations
of the distances in the correspondence table according to the selected distance
measure. Use this method if you want to examine differences between categories
of either or both variables instead of differences between the two variables.

Row principal. The distances between row points are approximations of the
distances in the correspondence table according to the selected distance measure.
The row scores are the weighted average of the column scores. Use this method
if you want to examine differences or similarities between categories of the row
variable.

Column principal. The distances between column points are approximations of the
distances in the correspondence table according to the selected distance measure.
The column scores are the weighted average of the row scores. Use this method if
you want to examine differences or similarities between categories of the column
variable.

Custom. You must specify a value between —1 and 1. A value of —1 corresponds
to column principal. A value of 1 corresponds to row principal. A value of 0
corresponds to symmetrical. All other values spread the inertia over both the
row and column scores to varying degrees. This method is useful for making
tailor-made biplots.

Correspondence Analysis Statistics

The Statistics dialog box allows you to specify the numerical output produced.
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Figure 5-5
Statistics dialog box

Comespondence Analysis: Statistics E2
¥ Comespondence table

¥ Qverview of row poirts ¥ Row profiles Cancel |

¥ Qverview of column poirts ¥ Column profiles

[¥ Pemutations of the comespondence table
Maimum dimension for permutations: I‘I_

Help

Corfidence Statistics for
¥ Row poirts ¥ Column points

Correspondence table. A crosstabulation of the input variables with row and column
marginal totals.

Overview of row points. For each row category, the scores, mass, inertia, contribution
to the inertia of the dimension, and the contribution of the dimension to the inertia of
the point.

Overview of column points. For each column category, the scores, mass, inertia,
contribution to the inertia of the dimension, and the contribution of the dimension to
the inertia of the point.

Row profiles. For each row category, the distribution across the categories of the
column variable.

Column profiles. For each column category, the distribution across the categories of the
row variable.

Permutations of the correspondence table. The correspondence table reorganized such
that the rows and columns are in increasing order according to the scores on the first
dimension. Optionally, you can specify the maximum dimension number for which
permuted tables will be produced. A permuted table for each dimension from 1 to the
number specified is produced.

Confidence Statistics for Row points. Includes standard deviation and correlations for all
nonsupplementary row points.

Confidence Statistics for Column points. Includes standard deviation and correlations
for all nonsupplementary column points.
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Correspondence Analysis Plots
The Plots dialog box allows you to specify which plots are produced.

Figure 5-6
Plots dialog box

Correspondence Analysis: Plots

e

v Biplot

I B Cancel
¥ Row pints

™ Column points =

ID Iabel width for scatterplots: IzD

— Line plots
[~ Transformed row categories
[ Transformed column categories

|0 abe! width far line plats: |23

r Flot Dimensions

' Display all dimensions in the solution
" Restrict the number of dimensions

Lowest dimension: I
Highest dimension: I

Scatterplots. Produces a matrix of all pairwise plots of the dimensions. Available
scatterplots include:

m  Biplot. Produces a matrix of joint plots of the row and column points. If principal
normalization is selected, the biplot is not available.

B Row points. Produces a matrix of plots of the row points.

®  Column points. Produces a matrix of plots of the column points.

Optionally, you can specify how many value label characters to use when labeling the
points. This value must be a non-negative integer less than or equal to 20.
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Line plots. Produces a plot for every dimension of the selected variable. Available
line plots include:

Transformed row categories. Produces a plot of the original row category values
against their corresponding row scores.

Transformed column categories. Produces a plot of the original column category
values against their corresponding column scores.

Optionally, you can specify how many value label characters to use when labeling the
category axis. This value must be a non-negative integer less than or equal to 20.

Plot Dimensions. Allows you to control the dimensions displayed in the output.

Display all dimensions in the solution. All dimensions in the solution are displayed
in a scatterplot matrix.

Restrict the number of dimensions. The displayed dimensions are restricted to
plotted pairs. If you restrict the dimensions, you must select the lowest and highest
dimensions to be plotted. The lowest dimension can range from 1 to the number
of dimensions in the solution minus 1, and is plotted against higher dimensions.
The highest dimension value can range from 2 to the number of dimensions in the
solution, and indicates the highest dimension to be used in plotting the dimension
pairs. This specification applies to all requested multidimensional plots.

CORRESPONDENCE Command Additional Features

You can customize your correspondence analysis if you paste your selections into a
syntax window and edit the resulting CORRESPONDENCE command syntax. The SPSS
command language also allows you to:

Specify table data as input instead of using casewise data (using the TABLE =
ALL subcommand).

Specify the number of value-label characters used to label points for each type of
scatterplot matrix or biplot matrix (with the PLOT subcommand).

Specify the number of value-label characters used to label points for each type of
line plot (with the PLOT subcommand).

Write a matrix of row and column scores to an SPSS matrix data file (with the
OUTFILE subcommand).



65

Correspondence Analysis

B Write a matrix of confidence statistics (variances and covariances) for the singular
values and the scores to an SPSS matrix data file (with the OUTFILE subcommand).

m  Specify multiple sets of categories to be equal (with the EQUAL subcommand).

See the SPSS Command Syntax Reference for complete syntax information.
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Multiple Correspondence
Analysis

Multiple Correspondence Analysis quantifies nominal (categorical) data by assigning
numerical values to the cases (objects) and categories so that objects within the same
category are close together and objects in different categories are far apart. Each object
is as close as possible to the category points of categories that apply to the object. In
this way, the categories divide the objects into homogeneous subgroups. Variables

are considered homogeneous when they classify objects in the same categories into
the same subgroups.

Example. Multiple Correspondence Analysis could be used to graphically display the
relationship between job category, minority classification, and gender. You might
find that minority classification and gender discriminate between people but that
job category does not. You might also find that the Latino and African-American
categories are similar to each other.

Statistics and plots. Object scores, discrimination measures, iteration history,
correlations of original and transformed variables, category quantifications,
descriptive statistics, object points plots, biplots, category plots, joint category plots,
transformation plots, and discrimination measures plots.

Data. String variable values are always converted into positive integers by ascending
alphanumeric order. User-defined missing values, system-missing values, and values
less than 1 are considered missing; you can recode or add a constant to variables with
values less than 1 to make them nonmissing.

Assumptions. All variables have the multiple nominal scaling level. The data must
contain at least three valid cases. The analysis is based on positive integer data.
The discretization option will automatically categorize a fractional-valued variable
by grouping its values into categories with a close-to-normal distribution and will
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automatically convert values of string variables into positive integers. You can specify
other discretization schemes.

Related procedures. For two variables, Multiple Correspondence Analysis is analogous
to Correspondence Analysis. If you believe that variables possess ordinal or numerical
properties, Categorical Principal Components Analysis should be used. If sets of
variables are of interest, Nonlinear Canonical Correlation Analysis should be used.

To Obtain a Multiple Correspondence Analysis

» From the menus choose:

Analyze
Data Reduction
Optimal Scaling...

Figure 6-1
Optimal Scaling dialog box
Optimal Scaling

r~Optimal Scaling Level —————————— Define

& Al variables multiple nominal;

" Some varable(s) not multiple nominal

r— Number of Sets of Varables
" One set
™ Multiple sets

— Selected Analysiz
Multiple Comespondence Analysis

Cateqarical Principal Companents

Hienlinean Canomicall Camelatian

» Select All variables multiple nominal.
» Select One set.

» Click Define.
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Figure 6-2
Multiple Correspondence Analysis dialog box
Il Multiple Correspondence Analysis
Analysis Vanables:
thread(1) -
head(1)
:ljwdhea;l1|:}:l}
ottom(
bmss[‘l} ;I

Define Varizble Weight.. |

Supplementary Variables:

Labelini Variables:

Dimensions in solution: IZ

oK | Paste | Beset | Concel | Hep |

» Select at least two analysis variables and specify the number of dimensions in the
solution.

» Click OK.

You may optionally specify supplementary variables, which are fitted into the solution
found, or labeling variables for the plots.

Define Variable Weight in Multiple Correspondence Analysis

You can set the weight for analysis variables.
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Figure 6-3
Define Variable Weight dialog box

MCA: Define Variable Weight E3
Variable weight : I‘I el |

Help

Variable weight. You can choose to define a weight for each variable. The value
specified must be a positive integer. The default value is 1.

Multiple Correspondence Analysis Discretization

The Discretization dialog box allows you to select a method of recoding your
variables. Fractional-valued variables are grouped into seven categories (or into the
number of distinct values of the variable if this number is less than seven) with an
approximately normal distribution unless otherwise specified. String variables are
always converted into positive integers by assigning category indicators according to
ascending alphanumeric order. Discretization for string variables applies to these
integers. Other variables are left alone by default. The discretized variables are then
used in the analysis.
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Discretization dialog box

MCA: Discretization
Varables: LCortirue I
thread(lnspecified)
head(Unspecified) Cancel |

indhead (Unspecified)
bottom(Unspecified)
brass(Unspecified)
length{Unspecified)

Method: Grouping j Change |
—Grouping
& Number of categories: l?—
Distrbution: ~ * Nomal Uniform
" Egual intervals: I—

Help

Multiple Correspondence Analysis

Method. Choose between grouping, ranking, and multiplying.

Grouping. Recode into a specified number of categories or recode by interval.

m  Ranking. The variable is discretized by ranking the cases.

Multiplying. The current values of the variable are standardized, multiplied by 10,

rounded, and have a constant added so that the lowest discretized value is 1.

Grouping. The following options are available when discretizing variables by grouping:

®  Number of categories. Specify a number of categories and whether the values of
the variable should follow an approximately normal or uniform distribution across

those categories.
|

Equal intervals. Variables are recoded into categories defined by these equally sized

intervals. You must specify the length of the intervals.

Multiple Correspondence Analysis Missing Values

The Missing Values dialog box allows you to choose the strategy for handling missing
values in analysis variables and supplementary variables.
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Figure 6-5
Missing Values dialog box

MCA: Missing Values
— Missing Value Strategy =
Analysis Variables: Corntirie |
tthreadiexciude values mode) Cancel
head(exclude values mods)
indhead(exclude values mode) Help

bottom{exclude values mode)
brass(exclude values mode)
lengthisxclude values mode)

Supplementary Variables:
Change
— Strategy
% Exclude missing values; for comelations impute after quartification.
' Mode " Edra category
' Impute missing valuss.
& Mode | Extia cateqony

" Exclude objects with missing values on this variable.

Missing Value Strategy. Choose to exclude missing values (passive treatment), impute

missing values (active treatment), or exclude objects with missing values (listwise
deletion).

m  Exclude missing values; for correlations impute after quantification. Objects with
missing values on the selected variable do not contribute to the analysis for this
variable. If all variables are given passive treatment, then objects with missing
values on all variables are treated as supplementary. If correlations are specified in
the Output dialog box, then (after analysis) missing values are imputed with the
most frequent category, or mode, of the variable for the correlations of the original
variables. For the correlations of the optimally scaled variables, you can choose
the method of imputation. Select Mode to replace missing values with the mode of
the optimally scaled variable. Select Extra category to replace missing values with
the quantification of an extra category. This implies that objects with a missing
value on this variable are considered to belong to the same (extra) category.

®  Impute missing values. Objects with missing values on the selected variable have

those values imputed. You can choose the method of imputation. Select Mode to
replace missing values with the most frequent category. When there are multiple
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modes, the one with the smallest category indicator is used. Select Extra category
to replace missing values with the same quantification of an extra category. This
implies that objects with a missing value on this variable are considered to belong
to the same (extra) category.

m  Exclude objects with missing values on this variable. Objects with missing values on
the selected variable are excluded from the analysis. This strategy is not available
for supplementary variables.

Multiple Correspondence Analysis Options

The Options dialog box allows you to select the initial configuration, specify iteration
and convergence criteria, select a normalization method, choose the method for
labeling plots, and specify supplementary objects.

Figure 6-6
Options dialog box

MCA: Options Ed
r~ Nomalization Method ———————— | ontinue I
¥ Range of cases IVariabIe Principal j

Fst: I_ Cancel |

~ Supplementary Cbjects

Custonm, value:
= I_ r— Criteria e
™ Single case: l_ Convergenice: W
Madmum iterations: W

Aidd |

~Label Plots By

Eh
ﬂl % Vagable labels or value labels
Hgmovel Limit for label length: IZD

"~ Variable names or values

r Flot Dimensions
¢ Digplay all dimensions in the solution
" Restrict the number of dimensions

Lowest dimension; I
Highest dirension: I

— Configuration
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Supplementary Objects. Specify the case number of the object (or the first and last case
numbers of a range of objects) that you want to make supplementary, and then click
Add. Continue until you have specified all of your supplementary objects. If an object
is specified as supplementary, then case weights are ignored for that object.

Normalization Method. You can specify one of five options for normalizing the object
scores and the variables. Only one normalization method can be used in a given
analysis.

Variable Principal. This option optimizes the association between variables. The
coordinates of the variables in the object space are the component loadings
(correlations with principal components, such as dimensions and object scores).
This is useful when you are interested primarily in the correlation between the
variables.

m  Object Principal. This option optimizes distances between objects. This is useful
when you are interested primarily in differences or similarities between the objects.

®  Symmetrical. Use this normalization option if you are interested primarily in the
relation between objects and variables.

® Independent. Use this normalization option if you want to examine distances
between objects and correlations between variables separately.

m  Custom. You can specify any real value in the closed interval [-1, 1]. A value of 1

is equal to the Object Principal method, a value of 0 is equal to the Symmetrical
method, and a value of —1 is equal to the Variable Principal method. By specifying
a value greater than —1 and less than 1, you can spread the eigenvalue over both
objects and variables. This method is useful for making a tailor-made biplot or
triplot.

Criteria. You can specify the maximum number of iterations the procedure can go
through in its computations. You can also select a convergence criterion value. The
algorithm stops iterating if the difference in total fit between the last two iterations is
less than the convergence value or if the maximum number of iterations is reached.

Label Plots By. Allows you to specify whether variables and value labels or variable
names and values will be used in the plots. You can also specify a maximum length
for labels.

Plot Dimensions. Allows you to control the dimensions displayed in the output.
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m  Display all dimensions in the solution. All dimensions in the solution are displayed
in a scatterplot matrix.

m  Restrict the number of dimensions. The displayed dimensions are restricted to
plotted pairs. If you restrict the dimensions, you must select the lowest and highest
dimensions to be plotted. The lowest dimension can range from 1 to the number
of dimensions in the solution minus 1 and is plotted against higher dimensions.
The highest dimension value can range from 2 to the number of dimensions in the
solution and indicates the highest dimension to be used in plotting the dimension
pairs. This specification applies to all requested multidimensional plots.

Configuration. You can read data from a file containing the coordinates of a
configuration. The first variable in the file should contain the coordinates for the
first dimension, the second variable should contain the coordinates for the second
dimension, and so on.

m [Initial. The configuration in the file specified will be used as the starting point of
the analysis.

m  Fixed. The configuration in the file specified will be used to fit in the variables.
The variables that are fitted in must be selected as analysis variables, but, because
the configuration is fixed, they are treated as supplementary variables (so they do
not need to be selected as supplementary variables).

Multiple Correspondence Analysis Output

The Output dialog box allows you to produce tables for object scores, discrimination
measures, iteration history, correlations of original and transformed variables, category
quantifications for selected variables, and descriptive statistics for selected variables.
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Figure 6-7
Output dialog box

MCA: Output

¥ Discrimination measures [ Comelations of transformed variables Cancel
[™ teration history

[~ Coelations of original variables Continuz I

Help

Quantified Yariables: gﬁgmsnfmﬁcahons and

thread

head E

indhead

bottom

brass Descriptive Statistics:

length

]

[Dbyect Scores [Hptions

|elude Eategores HF:

Labeling Variables: E

object

LLabel Dhject Seares Bu:

A

Object scores. Displays the object scores, including mass, inertia, and contributions,
and has the following options:

®m Include Categories Of. Displays the category indicators of the analysis variables
selected.

m Label Object Scores By. From the list of variables specified as labeling variables,
you can select one to label the objects.

Discrimination measures. Displays the discrimination measures per variable and per
dimension.

Iteration history. For each iteration, the variance accounted for, loss, and increase in
variance accounted for are shown.

Correlations of original variables. Shows the correlation matrix of the original variables
and the eigenvalues of that matrix.

Correlations of transformed variables. Shows the correlation matrix of the transformed
(optimally scaled) variables and the eigenvalues of that matrix.
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Category Quantifications and Contributions. Gives the category quantifications
(coordinates), including mass, inertia, and contributions, for each dimension of the
variable(s) selected.

Descriptive Statistics. Displays frequencies, number of missing values, and mode of
the variable(s) selected.

Multiple Correspondence Analysis Save

The Save dialog box allows you to save discretized data, object scores, and transformed
values to an SPSS data file or data set. You can also save transformed values and
object scores to the active data set.

B Data sets are available during the current session but are not available in subsequent
sessions unless you explicitly save them as data files. Data set names must adhere
to SPSS variable naming rules.

Filenames or data set names must be different for each type of data saved.

If you save object scores or transformed values to the active data set, you can
specify the number of multiple nominal dimensions.
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Figure 6-8
Save dialog box
MCh: Save
Digcretized Data Transformed Y anables
Create dizcretized data Save hransformed variables ta the active dataset
(#) Create a new datasst Create transformed wariables
Datazet name: | disc_data {®) Create a new dataset
() Wwiite a new data file Datazet name: | transformed_wars

) Wwirite a new data file

Object Scores
Sawve object scores bo the active dataset

Create object scores
() Create a new dataset
Datazet name: | object_scores

() wirite a new data file

Multiple naminal dimensions: & Al ) First: [ Continue |[ Cancel ][ Help

Multiple Correspondence Analysis Object Plots

The Object Plots dialog box allows you to specify the types of plots desired and the
variables to be plotted
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Figure 6-9
Object Plots dialog box
MCA: Object Plots E3
r Flots
Continue |
¥ Object poirts
Cancel
[ Obiects and centroids (biplot)
Hep |
- Eiplot Yanables
AL abl e Selected;
[melude: thread
% Al variables !wj?d ;
indheat
| Selected varables hattom E
brass
length
~ Label Objects
Label by: Awailable: Selected:
" Case number
% Variable indhead

bottom

Object points. A plot of the object points is displayed.

Objects and centroids (biplot). The object points are plotted with the variable centroids.

Biplot Variables. You can choose to use all variables for the biplots or select a subset.

Label Objects. You can choose to have objects labeled with the categories of selected
variables (you may choose category indicator values or value labels in the Options
dialog box) or with their case numbers. One plot is produced per variable if Variable is

selected.

Multiple Correspondence Analysis Variable Plots

The Variable Plots dialog box allows you to specify the types of plots desired and the
variables to be plotted.
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Figure 6-10
Variable Plots dialog box

thread Category Plots: Continue I

head

indhead - el

bottom n |

brass

length Joint Category Plots: Help
indhead

bottom

rTransformation Plots

o | |

DimEnsicms: I 2

I™ Include residual plots

r—Discrimination Measures ——

¥ Display plot
&' Use all variables
" Use selected variables

Category Plots. For each variable selected, a plot of the centroid coordinates is plotted.
Categories are in the centroids of the objects in the particular categories.

Joint Category Plots. This is a single plot of the centroid coordinates of each selected
variable.

Transformation Plots. Displays a plot of the optimal category quantifications versus the
category indicators. You can specify the number of dimensions desired; one plot will
be generated for each dimension. You can also choose to display residual plots for
each variable selected.

Discrimination Measures. Produces a single plot of the discrimination measures for the
selected variables.
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MULTIPLE CORRESPONDENCE Command Additional Features

You can customize your Multiple Correspondence Analysis if you paste your selections
into a syntax window and edit the resulting MULTIPLE CORRESPONDENCE command
syntax. The SPSS command language also allows you to:

B Specify rootnames for the transformed variables, object scores, and approximations
when saving them to the active data set (with the SAVE subcommand).

B Specify a maximum length for labels for each plot separately (with the PLOT
subcommand).

B Specify a separate variable list for residual plots (with the PLOT subcommand).

See the SPSS Command Syntax Reference for complete syntax information.
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Multidimensional Scaling
(PROXSCAL)

Multidimensional scaling attempts to find the structure in a set of proximity measures
between objects. This process is accomplished by assigning observations to specific
locations in a conceptual low-dimensional space such that the distances between points
in the space match the given (dis)similarities as closely as possible. The result is a
least-squares representation of the objects in that low-dimensional space, which, in
many cases, will help you to further understand your data.

Example. Multidimensional scaling can be very useful in determining perceptual
relationships. For example, when considering your product image, you can conduct
a survey to obtain a data set that describes the perceived similarity (or proximity) of
your product to those of your competitors. Using these proximities and independent
variables (such as price), you can try to determine which variables are important to
how people view these products, and you can adjust your image accordingly.

Statistics and plots. Iteration history, stress measures, stress decomposition, coordinates
of the common space, object distances within the final configuration, individual
space weights, individual spaces, transformed proximities, transformed independent
variables, stress plots, common space scatterplots, individual space weight scatterplots,
individual spaces scatterplots, transformation plots, Shepard residual plots, and
independent variables transformation plots.

Data. Data can be supplied in the form of proximity matrices or variables that are
converted into proximity matrices. The matrices can be formatted in columns or across
columns. The proximities can be treated on the ratio, interval, ordinal, or spline
scaling levels.

83
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Assumptions. At least three variables must be specified. The number of dimensions
cannot exceed the number of objects minus one. Dimensionality reduction is omitted if
combined with multiple random starts. If only one source is specified, all models are
equivalent to the identity model; therefore, the analysis defaults to the identity model.

Related procedures. Scaling all variables at the numerical level corresponds to standard
multidimensional scaling analysis.

To Obtain a Multidimensional Scaling

» From the menus choose:

Analyze
Scale
Multidimensional Scaling (PROXSCAL)...

This opens the Data Format dialog box.

Figure 7-1
Data Format dialog box
Multidimenzional 5caling: Data Format m
—Data Format———————— MHumber of Sources
&' The data are progimities " One matrix source

Catcel |
" Create prosimities from data ' Lultiple matrix sources

Help |

= One Saurce

The proximities are iha matry across calumns.

The proxmities are in a single calummn.

— Multiple Source

Iy

=[2§ The prosimitiez are in stacked matnces across columns.

—
Fiifa _— .

H | The proximities are in columns, one source per colurmn.
I

n

(e

' E The prosimities are stacked in a single column.

I
n

» Specify the format of your data:

Data Format. Specify whether your data consist of proximity measures or you want to
create proximities from the data.
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Number of Sources. If your data are proximities, specify whether you have a single
source or multiple sources of proximity measures.

One Source. If there is one source of proximities, specify whether your data set is
formatted with the proximities in a matrix across the columns or in a single column
with two separate variables to identify the row and column of each proximity.

®  Proximities in a matrix across columns. The proximity matrix is spread across a
number of columns equal to the number of objects. This leads to the Proximities in
Matrices across Columns dialog box.

m  Proximities in a single column. The proximity matrix is collapsed into a single
column, or variable. Two additional variables, identifying the row and column for
each cell, are necessary. This leads to the Proximities in One Column dialog box.

Multiple Sources. If there are multiple sources of proximities, specify whether the data
set is formatted with the proximities in stacked matrices across columns, in multiple
columns with one source per column, or in a single column.

®  Proximities in stacked matrices across columns. The proximity matrices are spread
across a number of columns equal to the number of objects and are stacked above
one another across a number of rows equal to the number of objects times the
number of sources. This leads to the Proximities in Matrices across Columns
dialog box.

®m  Proximities in columns, one source per column. The proximity matrices are collapsed
into multiple columns, or variables. Two additional variables, identifying the
row and column for each cell, are necessary. This leads to the Proximities in
Columns dialog box.

B Proximites in single column. The proximity matrices are collapsed into a single
column, or variable. Three additional variables, identifying the row, column, and
source for each cell, are necessary. This leads to the Proximities in One Column
dialog box.

» Click Define.
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Proximities in Matrices across Columns

If you select the proximities in matrices data model for either one source or multiple
sources in the Data Format dialog box, the main dialog box will appear as follows:

Figure 7-2
Proximities in Matrices Across Columns dialog box

Multidimenszional Scaling [Proximities in Matrices Across Columns)

Proimities:

@ Aunt [aunt] ﬂ

& Brother [brother] il

@ Cousin [cousin] E Reset |
® [ aughter [daughter

&> Father [father] ;I ﬂl

i eights: Help

Sources:
E I@sourceid
Model... | Hgstrictions...l Options... | Plotz... | Output, .. |

» Select three or more proximities variables. (Be sure that the order of the variables in
the list matches the order of the columns of the proximities.)

» Optionally, select a number of weights variables equal to the number of proximities
variables. (Be sure that the order of the weights matches the order of the proximities
that they weight.)

» Optionally, if there are multiple sources, select a sources variable. (The number of
cases in each proximities variable should equal the number of proximities variables
times the number of sources.)

Additionally, you can define a model for the multidimensional scaling, place
restrictions on the common space, set convergence criteria, specify the initial
configuration to be used, and choose plots and output.
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Proximities in Columns

If you select the multiple columns model for multiple sources in the Data Format
dialog box, the main dialog box will appear as follows:

Figure 7-3
Proximities in Columns dialog box

Multidimenszional Scaling [Proximities in Columns)

® 2 id Proximities:
gs:g:; = Paste |
& prowd ll Reset |
Bows: Cancel |
|®r_id
LColurmng: ﬂl
E [ c_id
Wieights:
Model... | Hgstrictions...l DOptiars... | Plats... | Output... |

» Select two or more proximities variables. (Each variable is assumed to be a matrix
of proximities from a separate source.)

» Select a rows variable to define the row locations for the proximities in each proximities
variable.

» Select a columns variable to define the column locations for the proximities in each
proximities variable. (Cells of the proximity matrix that are not given a row/column
designation are treated as missing.)

» Optionally, select a number of weights variables equal to the number of proximities
variables.

Additionally, you can define a model for the multidimensional scaling, place
restrictions on the common space, set convergence criteria, specify the initial
configuration to be used, and choose plots and output.
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Proximities in One Column

If you select the one column model for either one source or multiple sources in the
Data Format dialog box, the main dialog box will appear as follows:

Figure 7-4
Proximities in One Column dialog box

Multidimenszional Scaling [Froximities in One Column)

Proximities: ok |
Iﬁﬁuzm“ Paste |
[ i _ Fesel|

Colurmis: Cancel |
I@C-id Help |

Sources:

E [ id

Wieights:

|

Model... | Hgstrictions...l Options. .. | Ploks. .. | Output... |

Select a proximities variable. (t is assumed to be one or more matrices of proximities.)

Select a rows variable to define the row locations for the proximities in the proximities
variable.

Select a columns variable to define the column locations for the proximities in the
proximities variable.

If there are multiple sources, select a sources variable. (For each source, cells of the
proximity matrix that are not given a row/column designation are treated as missing.)

Optionally, select a weights variable.

Additionally, you can define a model for the multidimensional scaling, place
restrictions on the common space, set convergence criteria, specify the initial
configuration to be used, and choose plots and output.
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Create Proximities from Data

If you choose to create proximities from the data in the Data Format dialog box, the
main dialog box will appear as follows:

Figure 7-5
Create Proximities from Data dialog box

Multidimenzional Scaling [Create Proximitiezs from Data)

# Granddaughter [gdau Variables:
@ (randfather [afather] ® Aunt [aunt]

< Grandmother [grothel <& Brother [brother] ﬂl
@ Grandszon [gzon] @ Couszin [cousin Reset |
@ Mother [mother] @ D aughter [daughter] C I
& Nephew [nephew] > Father [father] ﬂl
< Niece [risce] Help |
@ Sister [zizter]

@ Son [zon)

& Uncle uncle] Sources:

E I@ sourceid
Create distances using: Measure. .. | Euclideat distance

Model... | Hgstrictions...l Options. .. | Plots... | Output...

» If you create distances between variables (see the Create Measure from Data dialog
box), select at least three variables. These variables will be used to create the proximity
matrix (or matrices, if there are multiple sources). If you create distances between
cases, only one variable is needed.

» If there are multiple sources, select a sources variable.

» Optionally, choose a measure for creating proximities.

Additionally, you can define a model for the multidimensional scaling, place
restrictions on the common space, set convergence criteria, specify the initial
configuration to be used, and choose plots and output.
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Create Measure from Data Dialog Box

Figure 7-6

Create Measure from Data dialog box

Multidimenszional Scaling: Create Measure from Data

 Measure Continue |
& |nterval IEucIidean distance ﬂ Cancel
ancel |
EaEwET: IE | Fmme IE,
Help |
" Counts: IEhi-square MEasLre j
" Binary: IEucIidean distance j
Eresent: |1 Ebment: ID

 Transform Valwes ——————————————

Create Diztance Matrix

Standardize: |Mone j ' Between variables
%) Hylvanatle " Between cases
1 Byicase

Multidimensional scaling uses dissimilarity data to create a scaling solution. If your
data are multivariate data (values of measured variables), you must create dissimilarity
data in order to compute a multidimensional scaling solution. You can specify the
details of creating dissimilarity measures from your data.

Measure. Allows you to specify the dissimilarity measure for your analysis. Select one
alternative from the Measure group corresponding to your type of data, and then select
one of the measures from the drop-down list corresponding to that type of measure.
Available alternatives are:

m Interval. Euclidean distance, Squared Euclidean distance, Chebychev, Block,
Minkowski, or Customized.

m  Counts. Chi-square measure or Phi-square measure.

m Binary. Euclidean distance, Squared Euclidean distance, Size difference, Pattern

difference, Variance, or Lance and Williams.

Create Distance Matrix. Allows you to choose the unit of analysis. Alternatives are
Between variables or Between cases.
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Transform Values. In certain cases, such as when variables are measured on very
different scales, you want to standardize values before computing proximities (not
applicable to binary data). Select a standardization method from the Standardize
drop-down list (if no standardization is required, select None).

Define a Multidimensional Scaling Model

The Model dialog box allows you to specify a scaling model, its minimum and
maximum number of dimensions, the structure of the proximity matrix, the
transformation to use on the proximities, and whether proximities are transformed
within each source separately or unconditionally on the source.

Figure 7-7
Model dialog box
Multidimensional Scaling: Model m
—ScalingModel—————  — Proximity Transformations
& |dentity " Ratin

Cancel |
" wWeighted Euclidean " Interval
" Generalized Euclidean = Ordinal il

" Reduced rank I™ Untie tiedlobservations
& Spline
Fank: |1
Degree: |2

-~ Shaps Irterior khots: |'|

& Lower-tiangular matrix Apply Transformations

£ Upper-tiangular matrix " ‘wfithin each source separately

 Full matrix  Across all sources simultaneousiy
— Proximities———— [~ Dimensions

& Diszimilarities Fiirnuim: |2
" Similarities bl @irnum: |2

Scaling Model. Choose from the following alternatives:
m ldentity. All sources have the same configuration.

m  Weighted Euclidean. This model is an individual differences model. Each source
has an individual space in which every dimension of the common space is
weighted differentially.
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m  Generalized Euclidean. This model is an individual differences model. Each source
has an individual space that is equal to a rotation of the common space, followed
by a differential weighting of the dimensions.

B Reduced rank. This model is a generalized Euclidean model for which you can
specify the rank of the individual space. You must specify a rank that is greater
than or equal to 1 and less than the maximum number of dimensions.

Shape. Specify whether the proximities should be taken from the lower-triangular part
or the upper-triangular part of the proximity matrix. You can specify that the full
matrix be used, in which case the weighted sum of the upper-triangular part and the
lower-triangular part will be analyzed. In any case, the complete matrix should be
specified, including the diagonal, though only the specified parts will be used.

Proximities. Specify whether your proximity matrix contains measures of similarity or
dissimilarity.

Proximity Transformations. Choose from the following alternatives:

m Ratio. The transformed proximities are proportional to the original proximities.
This is allowed only for positively valued proximities.

®m Interval. The transformed proximities are proportional to the original proximities,
plus an intercept term. The intercept assures all transformed proximities to be
positive.

®  Ordinal. The transformed proximities have the same order as the original
proximities. You specify whether tied proximities should be kept tied or allowed
to become untied.

m  Spline. The transformed proximities are a smooth nondecreasing piecewise
polynomial transformation of the original proximities. You specify the degree of
the polynomial and the number of interior knots.

Apply Transformations. Specify whether only proximities within each source are
compared with each other or whether the comparisons are unconditional on the source.

Dimensions. By default, a solution is computed in two dimensions (Minimum = 2,
Maximum = 2). You choose an integer minimum and maximum from 1 to the number
of objects minus 1 (as long as the minimum is less than or equal to the maximum).
The procedure computes a solution in the maximum dimensions and then reduces the
dimensionality in steps until the lowest is reached.
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Multidimensional Scaling Restrictions

The Restrictions dialog box allows you to place restrictions on the common space.

Figure 7-8
Restrictions dialog box

Multidimenszional Scaling: Restrictions

— Restictions on Common Space

Mo restrictions

" Some coordinates fixed ﬂl
& Linear combination of independent varishles Help |

r— Restriction Y ariables

Fead variables framm: File... | C:A SPROFSCALSkinship_var. zav

Luvailable: Selected:

(]

genderfinterval]
gener(intkeryal]
degreefinteryal]

Change... |
|ndependent variable tratsfarmations: Ilnterval vl
Degres: |2 Krots: I‘I

Restrictions on Common Space. Specify the type of restriction desired.
m  No restrictions. No restrictions are placed on the common space.

m  Some coordinates fixed. The first variable selected contains the coordinates of the
objects on the first dimension, the second variable corresponds to coordinates on
the second dimension, and so on. A missing value indicates that a coordinate on
a dimension is free. The number of variables selected must equal the maximum
number of dimensions requested.

m Linear combination of independent variables. The common space is restricted to be a
linear combination of the variables selected.

Restriction Variables. Select the variables that define the restrictions on the common
space. If you specified a linear combination, you specify an interval, nominal, ordinal,
or spline transformation for the restriction variables. In either case, the number of
cases for each variable must equal the number of objects.
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Multidimensional Scaling Options

The Options dialog box allows you to select the initial configuration style, specify
iteration and convergence criteria, and select standard or relaxed updates.

Figure 7-9
Options dialog box

Multidimenzional Scaling: Options

—Initial Canfiguration—————— [~ Iteration Criteria

' Simplex Stress convergence: I.DDD'I

¢ Torgerson ﬂl
~og Miniraurn strezs: I.DDD‘I
Help |

Continue :

™ Single random start

0 [ s s M awimum iterations: |1DD
Himberofistarts; |2 [ Use relased updates
& Custom

— Custom Configuration
Read wariables from: File... | L APRO=SCAL \Kinship_inisay

MHumber must match masimum model dimenzsionality, curmerntly: 2

Available: Selected:

Initial Configuration. Choose one of the following alternatives:

m  Simplex. Objects are placed at the same distance from each other in the maximum
dimension. One iteration is taken to improve this high-dimensional configuration,
followed by a dimension reduction operation to obtain an initial configuration that
has the maximum number of dimensions that you specified in the Model dialog
box.

m  Torgerson. A classical scaling solution is used as the initial configuration.

m  Single random start. A configuration is chosen at random.
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®  Multiple random starts. Several configurations are chosen at random, and the
configuration with the lowest normalized raw stress is used as the initial
configuration.

m  Custom. You select variables that contain the coordinates of your own initial
configuration. The number of variables selected should equal the maximum
number of dimensions specified, with the first variable corresponding to
coordinates on dimension 1, the second variable corresponding to coordinates on
dimension 2, and so on. The number of cases in each variable should equal the
number of objects.

Iteration Criteria. Specify the iteration criteria values.

m  Stress convergence. The algorithm will stop iterating when the difference in
consecutive normalized raw stress values is less than the number that is specified
here, which must lie between 0.0 and 1.0.

B Minimum stress. The algorithm will stop when the normalized raw stress falls
below the number that is specified here, which must lie between 0.0 and 1.0.

B Maximum iterations. The algorithm will perform the number of specified iterations,
unless one of the above criteria is satisfied first.

m  Use relaxed updates. Relaxed updates will speed up the algorithm; these updates
cannot be used with models other than the identity model or used with restrictions.

Multidimensional Scaling Plots, Version 1

The Plots dialog box allows you to specify which plots will be produced. If you have
the Proximities in Columns data format, the following Plots dialog box is displayed.
For Individual space weights, Original vs. transformed proximities, and Transformed
proximities vs. distances plots, you specify the sources for which the plots should be
produced. The list of available sources is the list of proximities variables in the main
dialog box.
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Figure 7-10
Plots dialog box, version 1

Multidimensional Scaling: Plots m

r~ Flots
[" Shess ¥ Original vs. transformed proximities Cancel |
[ Common space [ Transformed prosimities vs. distances
™ Individualspaces [T Tiransfomed independent varables il
¥ Individual space weights ¥ “ariable and dimenzsion comelations

r Source Plot

= Al sources
% Select zources

Awailable: Selected:

Stress. A plot is produced of normalized raw stress versus dimensions. This plot is
produced only if the maximum number of dimensions is larger than the minimum
number of dimensions.

Common space. A scatterplot matrix of coordinates of the common space is displayed.

Individual spaces. For each source, the coordinates of the individual spaces are
displayed in scatterplot matrices. This is possible only if one of the individual
differences models is specified in the Model dialog box.

Individual space weights. A scatterplot is produced of the individual space weights.
This is possible only if one of the individual differences models is specified in the
Model dialog box. For the weighted Euclidean model, the weights are printed in plots,
with one dimension on each axis. For the generalized Euclidean model, one plot is
produced per dimension, indicating both rotation and weighting of that dimension. The
reduced rank model produces the same plot as the generalized Euclidean model but
reduces the number of dimensions for the individual spaces.

Original vs. transformed proximities. Plots are produced of the original proximities
versus the transformed proximities.

Transformed proximities vs. distances. The transformed proximities versus the distances
are plotted.
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Transformed independent variables. Transformation plots are produced for the
independent variables.

Variable and dimension correlations. A plot of correlations between the independent
variables and the dimensions of the common space is displayed.

Multidimensional Scaling Plots, Version 2

The Plots dialog box allows you to specify which plots will be produced. If your data
format is anything other than Proximities in Columns, the following Plots dialog box
is displayed. For Individual space weights, Original vs. transformed proximities, and
Transformed proximities vs. distances plots, you specify the sources for which the plots
should be produced. The source numbers entered must be values of the sources variable
that is specified in the main dialog box and must range from 1 to the number of sources.

Figure 7-1
Plots dialog box, version 2

Multidimensional Scaling: Plots

— Flots ;
I” Stress ™ Original ws. transtomed prosimities .
o _ Cancel |
¥ Common space W Transformed prosimities vs. distances
I™ | Individualispaces I™ | Transtormed independent varisbles il
¥ | Individual space weights ¥ “ariable and dimension comrelations
— Source Plots
Al sources Sources:
& Select sources Ldd 1
Source number: |2 Change |
Femowve |

Multidimensional Scaling Output

The Output dialog box allows you to control the amount of displayed output and save
some of it to separate files.
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Figure 7-12
Output dialog box

Multidimensional Scaling: Dutput

— Dizplay
¥ Common space coordinates ™ Stress for fandom starks Cancel |
[T Individual space coordinates [ Iteration histary
¥ [ndividual space weights v Multiple stress measures Help |
[~ Distances [ Shess decomposition
[~ Transformed progimities ¥ Transformed|independent vaniables
[~ Input data [™ “aniable and dimension corelations

— Save to New File

[~ Commoh space coordinates Eile... |
= Individual space weights Eile... |
[ Distances File.. |
[~ Transformed prosimities Eile... |

[~ Transformed independent vaniables Eile... |

Display. Select one or more of the following items for display:

Common space coordinates. Displays the coordinates of the common space.

Individual space coordinates. The coordinates of the individual spaces are displayed
only if the model is not the identity model.

Individual space weights. Displays the individual space weights only if one of the
individual differences models is specified. Depending on the model, the space
weights are decomposed in rotation weights and dimension weights, which are
also displayed.

Distances. Displays the distances between the objects in the configuration.

Transformed proximities. Displays the transformed proximities between the objects
in the configuration.

Input data. Includes the original proximities and, if present, the data weights, the
initial configuration, and the fixed coordinates of the independent variables.

Stress for random starts. Displays the random number seed and normalized raw
stress value of each random start.

Iteration history. Displays the history of iterations of the main algorithm.
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Multiple stress measures. Displays different stress values. The table contains values
for normalized raw stress, Stress-1, Stress-1I, S-Stress, Dispersion Accounted For
(DAF), and Tucker’s Coefficient of Congruence.

Stress decomposition. Displays an objects and sources decomposition of final
normalized raw stress, including the average per object and the average per source.

Transformed independent variables. If a linear combination restriction was selected,
the transformed independent variables and the corresponding regression weights
are displayed.

Variable and dimension correlations. If a linear combination restriction was selected,
the correlations between the independent variables and the dimensions of the
common space are displayed.

Save to New File. You can save the common space coordinates, individual space
weights, distances, transformed proximities, and transformed independent variables to
separate SPSS data files.

PROXSCAL Command Additional Features

You can customize your multidimensional scaling of proximities analysis if you paste
your selections into a syntax window and edit the resulting PROXSCAL command
syntax. SPSS command language also allows you to:

Specify separate variable lists for transformations and residuals plots (with the
PLOT subcommand).

Specify separate source lists for individual space weights, transformations, and
residuals plots (with the PLOT subcommand).

Specify a subset of the independent variables transformation plots to be displayed
(with the PLOT subcommand).

See the SPSS Command Syntax Reference for complete syntax information.
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The Multidimensional Unfolding procedure attempts to find a common quantitative
scale that allows you to visually examine the relationships between two sets of objects.

Examples. You have asked 21 individuals to rank 15 breakfast items in order of
preference, 1 to 15. Using Multidimensional Unfolding, you can determine that the
individuals discriminate between breakfast items in two primary ways: between soft
and hard breads, and between fattening and non-fattening items.

Alternatively, you have asked a group of drivers to rate 26 models of cars on 10
attributes on a 6-point scale ranging from 1="not true at all’ to 6="very true’. Averaged
over individuals, the values are taken as similarities. Using Multidimensional
Unfolding, you find clusterings of similar models and the attributes with which they
are most closely associated.

Statistics and plots. The Multidimensional Unfolding procedure can produce an
iteration history, stress measures, stress decomposition, coordinates of the common
space, object distances within the final configuration, individual space weights,
individual spaces, transformed proximities, stress plots, common space scatterplots,
individual space weight scatterplots, individual spaces scatterplots, transformation
plots, and Shepard residual plots.

Data. Data are supplied in the form of rectangular proximity matrices. Each column is
considered a separate column object. Each row of a proximity matrix is considered a

separate row object. When there are multiple sources of proximities, the matrices are

stacked.
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>

>

>

Assumptions. At least two variables must be specified. The number of dimensions in
the solution may not exceed the number of objects minus one. If only one source

is specified, all models are equivalent to the identity model; therefore, the analysis
defaults to the identity model.

To Obtain a Multidimensional Unfolding

From the menus choose:

Analyze
Scale
Multidimensional Unfolding (PREFSCAL)...

Figure 8-1
Multidimensional Unfolding main dialog box

Multidimensional Unfolding

fﬁender [gender] Prowinities:
ilToast pop-up [TF] !E’
ﬂButteredtoast[BT]
Englizh muffin and 1 Reset
ol Jelly donut LD
il[linnamon toast [CTM
Weights: [ Help ]
Bows:
| |
Sources:
E | fh‘lenu scenafios [srcid]|
’ Model... ] [Hgstrictions...] [thions... ] ’ Plots... ] [ Output. .. ]

Select two or more variables that identify the columns in the rectangular proximity
matrix. Each variable represents a separate column object.

Optionally, select a number of weights variables equal to the number of column object
variables. The order of the weights variables should match the order of the column
objects they weight.
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» Optionally, select a rows variable. The values (or value labels) of this variable are
used to label row objects in the output.

» If there are multiple sources, optionally select a sources variable. The number of cases
in the data file should equal the number of row objects times the number of sources.

Additionally, you can define a model for the multidimensional unfolding, place
restrictions on the common space, set convergence criteria, specify the initial
configuration to be used, and choose plots and output.

Define a Multidimensional Unfolding Model

The Model dialog box allows you to specify a scaling model, its minimum and
maximum number of dimensions, the structure of the proximity matrix, the
transformation to use on the proximities, and whether proximities are transformed
conditonal upon the row, conditional upon the source, or unconditionally on the source.

Figure 8-2
Model dialog box

Multidimensional Unfolding: Model

Sealing Madsl Prawirnity Transfarmations
) |dentity (=) Mone
(%) 'Weighted Euclidean () Linear

() Generslized Evclidean () Spline

Prosimities
(%) Dissimilarities
) Similarities © Smooth
) Ordinal
Dimensions
Minirnurn: 2 [ Include intercept
b airmunm; 2

Apply Transfarmations
(3) "Within each row separately
() 'Within each zource separately

() Across all sources simultaneously

Scaling Model. Choose from the following alternatives:

m ldentity. All sources have the same configuration.
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Weighted Euclidean. This model is an individual differences model. Each source
has an individual space in which every dimension of the common space is
weighted differentially.

Generalized Euclidean. This model is an individual differences model. Each source
has an individual space that is equal to a rotation of the common space, followed
by a differential weighting of the dimensions.

Proximities. Specify whether your proximity matrix contains measures of similarity or
dissimilarity.

Dimensions. By default, a solution is computed in two dimensions (Minimum =

2, Maximum = 2). You can choose an integer minimum and maximum from 1 to
the number of objects minus 1 as long as the minimum is less than or equal to the
maximum. The procedure computes a solution in the maximum dimensionality and
then reduces the dimensionality in steps until the lowest is reached.

Proximity Transformations. Choose from the following alternatives:

None. The proximities are not transformed. You can optionally select Include
intercept, in which case the proximities can be shifted by a constant term.

Linear. The transformed proximities are proportional to the original proximities;
that is, the transformation function estimates a slope and the intercept is fixed at
0. This is also called a ratio transformation. You can optionally select Include
intercept, in which case the proximities can also be shifted by a constant term. This
is also called an interval transformation.

Spline. The transformed proximities are a smooth nondecreasing piecewise
polynomial transformation of the original proximities. You can specify the degree
of the polynomial and the number of interior knots. You can optionally select
Include intercept, in which case the proximities can also be shifted by a constant
term.

Smooth. The transformed proximities have the same order as the original
proximities, including a restriction that takes the differences between subsequent
values into account. The result is a “smooth ordinal” transformation. You can
specify whether tied proximities should be kept tied or allowed to become untied.

Ordinal. The transformed proximities have the same order as the original
proximities. You can specify whether tied proximities should be kept tied or
allowed to become untied.
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Apply Transformations. Specify whether only proximities within each row are compared
with each other, or only proximities within each source are compared with each
other, or the comparisons are unconditional on the row or source; that is, whether the
transformations are performed per row, per source, or over all proximities at once.

Multidimensional Unfolding Restrictions

The Restrictions dialog box allows you to place restrictions on the common space.

Figure 8-3
Restrictions dialog box

Multidimensional Unfolding: Restrictions

Fiestictions on Common Space
Biestrictions on row coordinates

f iy : : Cancel
[¥]{Restrictions on column coordinates
Help

Fiow Festriction \ariables

Read variables from: Fil
Mumber must match mazimum model dimensionality, curenthy: 2
Lvailable: Selected:

[

Colurnn Restriction Yariables

Riead variables from:

Mumber must match maximum model dimenzionality, currently: 2
Aerailable: Selected:

[

Restrictions on Common Space. You can choose to fix the coordinates of row and/or
column objects in the common space.

Row/Column Restriction Variables. Choose the file containing the restrictions and select
the variables that define the restrictions on the common space. The first variable
selected contains the coordinates of the objects on the first dimension, the second
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variable corresponds to coordinates on the second dimension, and so on. A missing
value indicates that a coordinate on a dimension is free. The number of variables
selected must equal the maximum number of dimensions requested. The number of
cases for each variable must equal the number of objects.

Multidimensional Unfolding Options

The Options dialog box allows you to select the initial configuration style, specify
iteration and convergence criteria, and set the penalty term for stress.

Figure 8-4
Options dialog box
Multidimensional Unfolding: Options
Iritial Configuration Iteration Criberia
(%) Classical Stress convergence: .0oooom
-
Imputation by: Minimum stress: 0oo
O Fiogs-Clif
O Canespordence b gximum iterations: 5000
Centroids
O - Penalty term
Strength: (R3]
() Multiple random starts
Range: 1.0

() Custom

Cusztar Canfiguratian

(]

Initial Configuration. Choose one of the following alternatives:

m Classical. The rectangular proximity matrix is used to supplement the intra-blocks
(values between rows and between columns) of the complete symmetrical MDS
matrix. Once the complete matrix is formed, a classical scaling solution is used as
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the initial configuration. The intra-blocks can be filled via imputation using the
triangle inequality or Spearman distances.

Ross-Cliff. The Ross-Cliff start uses the results of a singular value decomposition
on the double centered and squared proximity matrix as the initial values for the
row and column objects.

Correspondence. The correspondence start uses the results of a correspondence
analysis on the reversed data (similarities instead of dissimilarities) with symmetric
normalization of row and column scores.

Centroids. The procedure starts by positioning the row objects in the configuration
using an eigenvalue decomposition. Then the column objects are positioned at the
centroid of the specified choices. For the number of choices, specify a positive
integer between 1 and the number of proximities variables.

Multiple random starts. Solutions are computed for several initial configurations
chosen at random, and the one with the lowest penalized stress is shown as the
best solution.

Custom. You can select variables that contain the coordinates of your own initial
configuration. The number of variables selected should equal the maximum
number of dimensions specified, with the first variable corresponding to
coordinates on dimension 1, the second variable corresponding to coordinates on
dimension 2, and so on. The number of cases in each variable should equal the
combined number of row and column objects. The row and column coordinates
should be stacked, with the column coordinates following the row coordinates.

Iteration Criteria. Specify the iteration criteria values.

Stress convergence. The algorithm will stop iterating when the relative difference
in consecutive penalized stress values is less than the number specified here,
which must be non-negative.

Minimum stress. The algorithm will stop when the penalized stress falls below the
number specified here, which must be nonnegative.

Maximum iterations. The algorithm will perform the number of iterations specified
here, unless one of the above criteria is satisfied first.

Penalty Term. The algorithm attempts to minimize penalized stress, a goodness-of-fit
measure equal to the product of Kruskal’s Stress-1 and a penalty term based on the
coefficient of variation of the transformed proximities. These controls allow you to set
the strength and range of the penalty term.
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m  Strength. The smaller the value of the strength parameter, the stronger the penalty.
Specify a value between 0.0 and 1.0.

m  Range. This parameter sets the moment at which the penalty becomes active. If

set to 0.0, the penalty is inactive. Increasing the value causes the algorithm to

search for a solution with greater variation among the transformed proximities.
Specify a non-negative value.

Multidimensional Unfolding Plots

The Plots dialog box allows you to specify which plots will be produced.
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Figure 8-5
Plots dialog box

Multidimensional Unfolding: Plots

Final common space [ Transformation plots

[initial comman space Space weightz [ Shepard plats
Individual spaces [] Scatterplot of fit

[ Residual plats

Colors and M arkers

] — LColors:
2/Ci »

o= 3 [

EI*IM M arkers:
Source Flats

(®) Al sources

() Select sounces

Row Plots

Plots. The following plots are available:

m  Multiple starts. Displays a stacked histogram of penalized stress, displaying both
stress and penalty.

m Initial common space. Displays a scatterplot matrix of the coordinates of the initial
common space.

m  Stress per dimension. Produces a lineplot of penalized stress versus dimensionality.
This plot is produced only if the maximum number of dimensions is larger than
the minimum number of dimensions.
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m  Final Common space. A scatterplot matrix of coordinates of the common space
is displayed.

B Space weights. A scatterplot is produced of the individual space weights. This
is possible only if one of the individual differences models is specified in the
Model dialog box. For the weighted Euclidean model, the weights for all sources
are displayed in a plot, with one dimension on each axis. For the generalized
Euclidean model, one plot is produced per dimension, indicating both rotation and
weighting of that dimension for each source.

m Individual spaces. A scatterplot matrix of coordinates of the individual space of
each source is displayed. This is possible only if one of the individual differences
models is specified in the Model dialog box.

m Transformation plots. A scatterplot is produced of the original proximities versus
the transformed proximities. Depending on how transformations are applied, a
separate color is assigned to each row or source. An unconditional transformation
produces a single color.

m  Shepard plots. The original proximities versus both transformed proximities and
distances. The distances are indicated by points, and the transformed proximities
are indicated by a line. Depending on how transformations are applied, a separate
line is produced for each row or source. An unconditional transformation produces
one line.

m  Scatterplot of fit. A scatterplot of the transformed proximities versus the distances
is displayed. A separate color is assigned to each source if multiple sources are
specified.

m  Residuals plots. A scatterplot of the transformed proximities versus the residuals
(transformed proximities minus distances) is displayed. A separate color is
assigned to each source if multiple sources are specified.

Row Object Styles. These give you further control of the display of row objects in plots.
The values of the optional colors variable are used to cycle through all colors. The
values of the optional markers variable are used to cycle through all possible markers.

Source plots. For Individual spaces, Scatterplots of fit, and Residuals plots—and if
transformations are applied by source, for Transformation plots and Shepard plots—you
can specify the sources for which the plots should be produced. The source numbers
entered must be values of the sources variable specified in the main dialog box and
range from 1 to the number of sources.
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Row plots. If transformations are applied by row, for Transformation plots and Shepard
plots, you can specify the row for which the plots should be produced. The row
numbers entered must range from 1 to the number of rows.

Multidimensional Unfolding Output

The Output dialog box allows you to control the amount of displayed output and save
some of it to separate files.

Figure 8-6

Output dialog box

Multidimensional Unfolding: Output
Dispey
Clinput dats

[ Iteration history Final common space

.
Fit measures
[1lnitial data [ Strezs decomposition

[ Transtormed progimities [ Fitted distances

Save to Mew File

[] Commaon space coordinates

[ Distances

[ Transformed proximities

Display. Select one or more of the following for display:

®m Input data. Includes the original proximities and, if present, the data weights, the
initial configuration, and the fixed coordinates.

m  Stress for random starts. Displays the random number seed and penalized stress
value of each random start.

m [Initial data. Displays the coordinates of the initial common space.
m lteration history. Displays the history of iterations of the main algorithm.

m  Fit measures. Displays different measures. The table contains several
goodness-of-fit, badness-of-fit, correlation, variation, and nondegeneracy
measures.
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Stress decomposition. Displays an objects, rows, and sources decomposition of
penalized stress, including row, column, and source means and standard deviations.

Common space coordinates. Displays the coordinates of the common space.
Distances. Displays the distances between the objects in the configuration.

Individual space weights. Displays the individual space weights. This option is
available only if one of the individual differences models is specified. Depending
on the model, the space weights are decomposed in rotation weights and dimension
weights, which are also displayed.

Individual space coordinates. The coordinates of the individual spaces are

displayed. This option is available only if one of the individual differences models
is specified.

Transformed proximities. Displays the transformed proximities.

Save to New File. You can save the common space coordinates, individual space
weights, distances, and transformed proximities to separate SPSS data files.

PREFSCAL Command Additional Features

You can customize your Multidimensional Unfolding of proximities analysis if you
paste your selections into a syntax window and edit the resulting PREFSCAL command
syntax. SPSS command language also allows you to:

Specify multiple source lists for Individual spaces, Scatterplots of fit, and Residuals
plots—and in the case of matrix conditional transformations, for Transformation

plots and Shepard plots—when multiple sources are available (with the PLOT
subcommand).

Specify multiple row lists for Transformation plots and Shepard plots in the case of
row conditional transformations (with the PLOT subcommand).

Specify a number of rows instead of a row ID variable (with the INPUT
subcommand).

Specify a number of sources instead of a source ID variable (with the INPUT
subcommand).

See the SPSS Command Syntax Reference for complete syntax information.
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Categorical Regression

The goal of categorical regression with optimal scaling is to describe the relationship
between a response variable and a set of predictors. By quantifying this relationship,
values of the response can be predicted for any combination of predictors.

In this chapter, two examples serve to illustrate the analyses involved in optimal
scaling regression. The first example uses a small data set to illustrate the basic
concepts. The second example uses a much larger set of variables and observations
in a practical example.

Example: Carpet Cleaner Data

In a popular example (Green and Wind, 1973), a company interested in marketing

a new carpet cleaner wants to examine the influence of five factors on consumer
preference—package design, brand name, price, a Good Housekeeping seal, and a
money-back guarantee. There are three factor levels for package design, each one
differing in the location of the applicator brush; three brand names (K2R, Glory, and
Bissell); three price levels; and two levels (either no or yes) for each of the last two
factors. The following table displays the variables used in the carpet-cleaner study,
with their variable labels and values.
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Table 9-1
Explanatory variables in the carpet-cleaner study
Variable name Variable label Value label
package Package design A*, B*, C*
brand Brand name K2R, Glory, Bissell
price Price $1.19, $1.39, $1.59
seal Good Housekeeping  No, yes
seal
money Money-back No, yes
guarantee

Ten consumers rank 22 profiles defined by these factors. The variable Preference
contains the rank of the average rankings for each profile. Low rankings correspond
to high preference. This variable reflects an overall measure of preference for
each profile. Using categorical regression, you will explore how the five factors
are related to preference. This data set can be found in carpet.sav, found in the
\tutorial\sample_files\ subdirectory of the directory in which you installed SPSS.

A Standard Linear Regression Analysis

» To produce standard linear regression output, from the menus choose:

Analyze
Regression
Linear...
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Figure 9-1
Linear Regression dialog box

Il Linear Regression

@ Package design [pach i s

& Brand name [brand] ll_
® Price [price]

@Gocd Housekesping s

< Money-back guarantes

N

[ —
Satisos..| _Pos. | Save.. | Optons.. |

» Select Preference as the dependent variable.
» Select Package design through Money-back guarantee as independent variables.

» Click Plots.
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Figure 9-2
Plots dialog box
Linear Regression: Plots &
DEPENDHT Seoather 1 af 1
“ZPRED Mext
S [iea ]
“DRESID y e |
*4DJPRED [v] © [ZREsiD elp
*SRESID -
*3DRESID ]
Standardized Residual Plots [] Produce all partial plats
[ Histagram
[ Wogmal probability plot
» Select *ZRESID as the y-axis variable.
» Select *ZPRED as the x-axis variable.
» Click Continue.
» Click Save in the Linear Regression dialog box.
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» Select Standardized in the Residuals group.

>

Figure 9-3
Save dialog box

Linear Regression: Save

Predicted alues
[ Unstandardized
[] Standardized
[ Adjusted
[15.E. of mean predictions
Distances
[ Mahalanahiz
[ Cook's
[ Leverage values

Prediction Intervals

[IHean []Individual

Confidence Interval:

Coefficient statistics

[] Create coefficient statistics

Export mode! infarmation tox<kL file

Include the covariance matiy

o

Reziduals

[ Unstandardized
Standardized

[ Studentized

[ Deleted

[ Studentized deleted

Influence Statistics

] DtBetals)

[] Standardized DiBeta(z)
] Difk

[] Standardized DiFit

[] Covariance ratio

Brovize

Click Continue.

» Click OK in the Linear Regression dialog box.

Categorical Regression
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Model Summary

Figure 9-4
Model summary for standard linear regression

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 8412 F07 615 3.99810
4. Predictors: (Constant), Money-back guarantee, Price,
Good Housekeeping seal, Brand name, Package
design

The standard approach for describing the relationships in this problem is linear
regression. The most common measure of how well a regression model fits the data is
R2. This statistic represents how much of the variance in the response is explained by
the weighted combination of predictors. The closer R? is to 1, the better the model
fits. Regressing Preference on the five predictors results in an R? of 0.707, indicating
that approximately 71% of the variance in the preference rankings is explained by the
predictor variables in the linear regression.

Coefficients

The standardized coefficients are shown in the table. The sign of the coefficient
indicates whether the predicted response increases or decreases when the predictor
increases, all other predictors being constant. For categorical data, the category coding
determines the meaning of an increase in a predictor. For instance, an increase in
Money-back guarantee, Package design, or Good Housekeeping seal will result in a
decrease in predicted preference ranking. Money-back guarantee is coded 1 for no
money-back guarantee and 2 for money-back guarantee. An increase in Money-back
guarantee corresponds to the addition of a money-back guarantee. Thus, adding a
money-back guarantee reduces the predicted preference ranking, which corresponds to
an increased predicted preference.
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Figure 9-5
Regression coefficients
Unstandardized Standardized
Coefficients Coeflicients
Model B Std. Error Beta t Sig.
1 (Constant) 22529 BATT 4352 000
Package design -4.159 1.036 -.560 -4.015 001
Brand name 429 1.054 056 407 689
Price 2703 1.009 366 2.681 016
Good Housekeeping seal -4.314 1.780 -.330 -2.423 028
Money-back guarantee -2.779 1.921 -197 -1.447 V167

The value of the coefficient reflects the amount of change in the predicted preference
ranking. Using standardized coefficients, interpretations are based on the standard
deviations of the variables. Each coefficient indicates the number of standard
deviations that the predicted response changes for a one standard deviation change
in a predictor, all other predictors remaining constant. For example, a one standard
deviation change in Brand name yields an increase in predicted preference of 0.056
standard deviations. The standard deviation of Preference is 6.44, so Preference
increases by 0.056 x 6.44 = 0.361. Changes in Package design yield the greatest
changes in predicted preference.
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Residual Scatterplots

Figure 9-6
Residuals versus predicted values

Dependent Variable: Preference

Regression Standardized Residual

I I
-2 -1

Regression Standardized Predicted Value

The standardized residuals are plotted against the standardized predicted values. No
patterns should be present if the model fits well. Here you see a U-shape in which both
low and high standardized predicted values have positive residuals. Standardized
predicted values near O tend to have negative residuals.

» To produce a scatterplot of the residuals by the predictor Package design, from the

menus choose:

Graphs
Scatter/Dot...

| I
0 1
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Figure 9-7
Scatter/Dot dialog box

Ll Simple . b atrix Simple
S| Scatter ] | Scatter Dot @
+ Overlay }L 20 E
K Scatter im=| Scatter

» Click Define.

Figure 9-8
Simple Scatterplot dialog box

I Simple Scatterplot B=

<#» Brand name [brand]
< Price [price]
@Eood Housekesping s

» Select Standardized Residual as the y-axis variable and Package design as the x-axis
variable.

» Click OK.
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Figure 9-9
Residuals versus package design
o
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Package design

The U-shape is more pronounced in the plot of the standardized residuals against
package. Every residual for Design B* is negative, whereas all but one of the residuals
is positive for the other two designs. Because the linear regression model fits one
parameter for each variable, the relationship cannot be captured by the standard
approach.

A Categorical Regression Analysis

The categorical nature of the variables and the nonlinear relationship between
Preference and Package design suggest that regression on optimal scores may perform
better than standard regression. The U-shape of the residual plots indicates that a
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nominal treatment of Package design should be used. All other predictors will be
treated at the numerical scaling level.

The response variable warrants special consideration. You want to predict the
values of Preference. Thus, recovering as many properties of its categories as possible
in the quantifications is desirable. Using an ordinal or nominal scaling level ignores
the differences between the response categories. However, linearly transforming the
response categories preserves category differences. Consequently, scaling the response
numerically is generally preferred and will be employed here.

Running the Analysis

» To run a Categorical Regression analysis, from the menus choose:

Analyze
Regression
Optimal Scaling...

Figure 9-10
Categorical Regression dialog box

Il Categorical Regression

Dependert Varable:

[pref(Spline ordinal 2 2)
[efine Scale... |

DeﬁneScaIe...l
OK | Paste | Resst | Cancel | Heb

» Select Preference as the dependent variable.
» Select Package design through Money-back guarantee as independent variables.

» Select Preference and click Define Scale.
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Figure 9-1
Define Scale dialog box
Categorical Regression: Define Scale
—Optimal Scaling Level -_Continue
" Spline Ordinal " Ordinal
r- y

ominal " Nominal Cancel

= Splime

Weqee: I2 [rterion Krmte: IE

» Select Numeric as the optimal scaling level.

» Click Continue.

» Select Package design and click Define Scale in the Categorical Regression dialog box.

Figure 9-12
Define Scale dialog box
Categorical Regression: Define Scale E
—Optimal Scaling Level -Continue
¢ Spline Ordinal e __Drdina!._ -
" Spline Nominal lcl Cancel
€ Numeri
umeric Help |
= SEltE
eqree: I2 [rterion Krots: Iz

» Select Nominal as the optimal scaling level.

» Click Continue.

» Select Brand name through Money-back guarantee and click Define Scale in the
Categorical Regression dialog box.
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Figure 9-13
Define Scale dialog box

Categorical Regression: Define Scale

—Optimal Scaling Level Continue
- o |_Cortrwe |

" Spline Ordinal
" Spline Nominal " Nominal Cancel

= Splime

Weqee: I2 [rterion Krmte: IE

Select Numeric as the optimal scaling level.
Click Continue.

Click Output in the Categorical Regression dialog box.

Figure 9-14
Output dialog box
Categorical Regression: Output E3
— Tables
[¥ Cormelations of original variables ml
i~ Coefficients v Cormelations of transformed vanables Cancel
™ kteration history [~ ANOVA
Help
Analysis Variables: Category Quantifications:
pref
package
brand E
price
seal
money
Descriptive Statistics:

Select Correlations of original variables and Correlations of transformed variables.
Deselect ANOVA.
Click Continue.

Click Save in the Categorical Regression dialog box.
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Figure 9-15
Save dialog box
Categorical Regression: Save
[]5ave predicted values ta the active datasst

Save [esiduals to the active dataszet

Digcretized D ata

[] Create discretized data

Transformed W ariables

[V]:5 ave hransformed vanables o the active dataset

[] Create tranzsformed variables

» Select Save residuals to the active dataset.

» Select Save transformed variables to the active dataset in the Transformed Variables
group.

» Click Continue.

» Click Plots in the Categorical Regression dialog box.
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Figure 9-16

Plots dialog box

Categorical Regression: Plots =]
pref— Transformation Plots: Cortinue |
package —
brand package —
price |
seal -
money P

Besidual Flots:

» Choose to create transformation plots for package and price.
» Click Continue.

» Click OK in the Categorical Regression dialog box.

Intercorrelations

The intercorrelations among the predictors are useful for identifying multicollinearity
in the regression. Variables that are highly correlated will lead to unstable regression
estimates. However, due to their high correlation, omitting one of them from the model
only minimally affects prediction. The variance in the response that can be explained
by the omitted variable is still explained by the remaining correlated variable.
However, zero-order correlations are sensitive to outliers and also cannot identify
multicollinearity due to a high correlation between a predictor and a combination

of other predictors.
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Figure 9-17
Original predictor correlations
Good
Package Housekee Maoney-back
design Brand name Price ping seal guarantee
Package design 1.000 -189 -126 081 066
Brand name -89 1.000 {065 -042 -034
Price - 126 065 1.000 Qi 000
Good Housekeeping seal 081 -042 000 1.000 -.039
Money-back guarantee 066 -034 000 -039 1.000
Dimension 1 2 3 4 5
Eigenvalue 1.291 1.038 880 805 785
Figure 9-18
Transformed predictor correlations
Good
Package Housekee Money-back
design Brand name Price ping seal guarantee
Package design 1.000 -156 -.089 032 02
Brand name - 156 1.000 065 -.042 -034
Price -.089 065 1.000 000 .000
Good Housekeeping seal 032 -042 000 1.000 -.039
Maoney-back guarantee 02 -034 000 -039 1.000
Dimension 1 2 3 4 5
Eigenvalue 1.248 1.043 983 05 821

The intercorrelations of the predictors for both the untransformed and transformed
predictors are displayed. All values are near 0, indicating that multicollinearity
between individual variables is not a concern.

Notice that the only correlations that change involve Package design. Because
all other predictors are treated numerically, the differences between the categories
and the order of the categories are preserved for these variables. Consequently, the
correlations cannot change.

Model Fit and Coefficients

The Categorical Regression procedure yields an R2 of 0.948, indicating that almost
95% of the variance in the transformed preference rankings is explained by the
regression on the optimally transformed predictors. Transforming the predictors
improves the fit over the standard approach.
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Figure 9-19
Model summary for categorical regression
Adjusted
Multiple R | R Square F Square
974 948 927

Dependent Variable: Preference
Predictors: Package design Brand name Price
Good Housekeeping seal Money-back guarantee

The following table shows the standardized regression coefficients. Categorical
regression standardizes the variables, so only standardized coefficients are reported.
These values are divided by their corresponding standard errors, yielding an F test
for each variable. However, the test for each variable is contingent upon the other
predictors being in the model. In other words, the test determines if omission of

a predictor variable from the model with all other predictors present significantly
worsens the predictive capabilities of the model. These values should not be used to
omit several variables at one time for a subsequent model. Moreover, alternating least
squares optimizes the quantifications, implying that these tests must be interpreted
conservatively.

Figure 9-20
Standardized coefficients for transformed predictors
Standardized
Coefficients
Beta Std. Error dr F Sig.
Package design -748 060 2 155.289 000
Brand name 045 060 1 578 459
Price 371 059 1 30.312 .000
Good Housekeeping seal -.350 059 1 35,299 000
Money-back guarantee -.1549 059 1 7175 017

Dependent Variable: Preference

The largest coefficient occurs for Package design. A one standard deviation increase

in Package design yields a 0.748 standard deviation decrease in predicted preference

ranking. However, Package design is treated nominally, so an increase in the

quantifications need not correspond to an increase in the original category codes.
Standardized coefficients are often interpreted as reflecting the importance of

each predictor. However, regression coefficients cannot fully describe the impact of

a predictor or the relationships between the predictors. Alternative statistics must be

used in conjunction with the standardized coefficients to fully explore predictor effects.
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Correlations and Importance

To interpret the contributions of the predictors to the regression, it is not sufficient
to only inspect the regression coefficients. In addition, the correlations, partial
correlations, and part correlations should be inspected. The following table contains
these correlational measures for each variable.

The zero-order correlation is the correlation between the transformed predictor and
the transformed response. For this data, the largest correlation occurs for Package
design. However, if you can explain some of the variation in either the predictor or the
response, you will get a better representation of how well the predictor is doing.

Figure 9-21
Zero-order, part, and partial correlations (transformed variables)
Correlations Tolerance
After Before
Zero- Transfor Transfor
COrder | Partial Part Importance mation mation
Package design - 816 -955 -733 Gd44 859 842
Brand name 206 193 045 010 971 961
Price 440 851 369 72 989 982
Good Housekeeping seal =370 -838 -.349 137 996 991
Maoney-back guarantee -223 - 569 -158 037 987 993

Dependent Variable: Preference

Other variables in the model can confound the performance of a given predictor in
predicting the response. The partial correlation coefficient removes the linear effects of
other predictors from both the predictor and the response. This measure equals the
correlation between the residuals from regressing the predictor on the other predictors
and the residuals from regressing the response on the other predictors. The squared
partial correlation corresponds to the proportion of the variance explained relative to
the residual variance of the response remaining after removing the effects of the other
variables. For example, Package design has a partial correlation of —0.955. Removing
the effects of the other variables, Package design explains (-0.955)2 = 0.91 = 91% of
the variation in the preference rankings. Both Price and Good Housekeeping seal also
explain a large portion of variance if the effects of the other variables are removed.

As an alternative to removing the effects of variables from both the response and a
predictor, you can remove the effects from just the predictor. The correlation between
the response and the residuals from regressing a predictor on the other predictors is the
part correlation. Squaring this value yields a measure of the proportion of variance
explained relative to the total variance of response. If you remove the effects of Brand
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name, Good Housekeeping seal, Money back guarantee, and Price from Package
design, the remaining part of Package design explains (—0.733)2 = 0.54 = 54% of the
variation in preference rankings.

Importance

In addition to the regression coefficients and the correlations, Pratt’s measure of
relative importance (Pratt, 1987) aids in interpreting predictor contributions to the
regression. Large individual importances relative to the other importances correspond
to predictors that are crucial to the regression. Also, the presence of suppressor
variables is signaled by a low importance for a variable that has a coefficient of similar
size to the important predictors.

In contrast to the regression coefficients, this measure defines the importance of
the predictors additively—that is, the importance of a set of predictors is the sum of
the individual importances of the predictors. Pratt’s measure equals the product of the
regression coefficient and the zero-order correlation for a predictor. These products
add to R2, so they are divided by R2, yielding a sum of 1. The set of predictors
Package design and Brand name, for example, have an importance of 0.654. The
largest importance corresponds to Package design, with Package design, Price, and
Good Housekeeping seal accounting for 95% of the importance for this combination
of predictors.

Multicollinearity

Large correlations between predictors will dramatically reduce a regression model’s
stability. Correlated predictors result in unstable parameter estimates. Tolerance
reflects how much the independent variables are linearly related to one another.
This measure is the proportion of a variable’s variance not accounted for by other
independent variables in the equation. If the other predictors can explain a large
amount of a predictor’s variance, that predictor is not needed in the model. A
tolerance value near 1 indicates that the variable cannot be predicted very well from
the other predictors. In contrast, a variable with a very low tolerance contributes little
information to a model, and can cause computational problems. Moreover, large
negative values of Pratt’s importance measure indicate multicollinearity.

All of the tolerance measures are very high. None of the predictors are predicted
very well by the other predictors and multicollinearity is not present.
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Transformation Plots

Plotting the original category values against their corresponding quantifications can
reveal trends that might not be noticed in a list of the quantifications. Such plots are
commonly referred to as transformation plots. Attention should be given to categories
that receive similar quantifications. These categories affect the predicted response in
the same manner. However, the transformation type dictates the basic appearance of
the plot.

Variables treated as numerical result in a linear relationship between the
quantifications and the original categories, corresponding to a straight line in the
transformation plot. The order and the difference between the original categories is
preserved in the quantifications.

The order of the quantifications for variables treated as ordinal correspond to the
order of the original categories. However, the differences between the categories are
not preserved. As a result, the transformation plot is nondecreasing but need not be
a straight line. If consecutive categories correspond to similar quantifications, the
category distinction may be unnecessary and the categories could be combined. Such
categories result in a plateau on the transformation plot. However, this pattern can
also result from imposing an ordinal structure on a variable that should be treated as
nominal. If a subsequent nominal treatment of the variable reveals the same pattern,
combining categories is warranted. Moreover, if the quantifications for a variable
treated as ordinal fall along a straight line, a numerical transformation may be more
appropriate.

For variables treated as nominal, the order of the categories along the horizontal axis
corresponds to the order of the codes used to represent the categories. Interpretations
of category order or of the distance between the categories is unfounded. The plot can
assume any nonlinear or linear form. If an increasing trend is present, an ordinal
treatment should be attempted. If the nominal transformation plot displays a linear
trend, a numerical transformation may be more appropriate.

The following figure displays the transformation plot for Price, which was treated
as numerical. Notice that the order of the categories along the straight line correspond
to the order of the original categories. Also, the difference between the quantifications
for $1.19 and $1.39 (-1.173 and 0) is the same as the difference between the
quantifications for $7.39 and $1.59 (0 and 1.173). The fact that categories 1 and 3 are
the same distance from category 2 is preserved in the quantifications.
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Figure 9-22
Transformation plot of Price (numerical)

0.0 —

Quantifications

l I I
114 $1.39 $1.59

Categories

The nominal transformation of Package design yields the following transformation
plot. Notice the distinct nonlinear shape in which the second category has the largest
quantification. In terms of the regression, the second category decreases predicted
preference ranking, whereas the first and third categories have the opposite effect.
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Figure 9-23
Transformation plot of Package design (nominal)
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Residual Analysis

Using the transformed data and residuals that you saved to the active dataset allows
you to create a scatterplot of the predicted values by the transformed values of Package
design.

To obtain such a scatterplot, recall the Simple Scatterplot dialog box and click Reset
to clear your previous selections and restore the default options.
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» Select Package design Quantification as the x-axis variable.

>

Figure 9-24
Simple Scatterplot dialog box
Package design [pack Y fods: oK
<®¢> Brand name [brand] I@ Residual [RES_1] _l
< Price [price] . Paste |
Fal k3

> Good Housekeeping s Reset |
@ Money-back guarantes
& Preference [pref] Cancel
#» Standardized Residual Help

> Preference Quantificati
<#» Brand name Quartfica
< Price Quantification [T]
< Good Housekeeping s

® Money-back guarantes
= st e wariablzs
Columns:
= st eolumn wariaklzs
— Template

[ Use chart specffications from:

Titles... Options... |

Select Residual as the y-axis variable.

Click OK.

Categorical Regression

The scatterplot shows the standardized residuals plotted against the optimal scores for
Package design. All of the residuals are within two standard deviations of 0. A random
scatter of points replaces the U-shape present in the scatterplot from the standard linear
regression. Predictive abilities are improved by optimally quantifying the categories.
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Figure 9-25
Residuals for Categorical Regression
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Package design Quantification

Example: Ozone Data

In this example, you will use a larger set of data to illustrate the selection and

effects of optimal scaling transformations. The data include 330 observations on six
meteorological variables previously analyzed by Breiman and Friedman (Breiman
and Friedman, 1985), and Hastie and Tibshirani (Hastie and Tibshirani, 1990),
among others. The following table describes the original variables. Your categorical
regression attempts to predict the ozone concentration from the remaining variables.
Previous researchers found nonlinearities among these variables, which hinder standard
regression approaches.
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Table 9-2

Original variables

Variable Description

ozon daily ozone level; categorized into one of 38
categories

ibh inversion base height

dpg pressure gradient (mm Hg)

Vvis visibility (miles)

temp temperature (degrees F)

doy day of the year

This data set can be found in ozone.sav, located in the \tutorial\sample_files\
subdirectory of the directory in which you installed SPSS.

Discretizing Variables

If a variable has more categories than is practically interpretable, you should modify
the categories using the Discretization dialog box to reduce the category range to a
more manageable number.

The variable Day of the year has a minimum value of 3 and a maximum value of
365. Using this variable in a categorical regression corresponds to using a variable
with 365 categories. Similarly, Visibility (miles) ranges from O to 350. To simplify
interpretation of analyses, discretize these variables into equal intervals of length 10.

The variable Inversion base height ranges from 111 to 5000. A variable with this
many categories results in very complex relationships. However, discretizing this
variable into equal intervals of length 100 yields roughly 50 categories. Using a
50-category variable rather than a 5000-category variable simplifies interpretations
significantly.

Pressure gradient (mm Hg) ranges from —69 to 107. The procedure omits any
categories coded with negative numbers from the analysis, but discretizing this variable
into equal intervals of length 10 yields roughly 19 categories.

Temperature (degrees F) ranges from 25 to 93 on the Fahrenheit scale. In order to
analyze the data as if it were on the Celsius scale, discretize this variable into equal
intervals of length 1.8.
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Different discretizations for variables may be desired. The choices used here are
purely subjective. If you desire fewer categories, choose larger intervals. For example,
Day of the year could have been divided into months of the year or seasons.

Selection of Transformation Type

Each variable can be analyzed at one of several different levels. However, because
prediction of the response is the goal, you should scale the response “as is” by
employing the numerical optimal scaling level. Consequently, the order and the
differences between categories will be preserved in the transformed variable.

» To run a Categorical Regression analysis, from the menus choose:

Analyze
Regression
Optimal Scaling...

Figure 9-26
Categorical Regression dialog box

Il Categorical Regression

@ vh Dependent Varable: Terwer

E line ordinal 2 2)
Missing...
Define Scale... |

LR

Independent Variable(s):
ibh(Spline ordinal 2 2) Output...
dpg(Spline ordinal 2 2)
vig(Spline ordinal 2 2) Save
temp(Spline ordinal 2 2)

E doy(Spline ordinal 2 2) Plots...

[MEfitie Seale.. |
OK | Pase | Reset | Cancel |  Heb |

» Select Daily ozone level as the dependent variable.
» Select Inversion base height through Day of the year as independent variables.

» Select Daily ozone level and click Define Scale.
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Define Scale dialog box

Categorical Regression: Define Scale

—Optimal Scaling Level
" Spline Ordinal
~

ominal

" Ordinal
" Nominal

= Splime

Weqee: I2

| terniorn FKrats: I2

» Select Numeric as the optimal scaling level.

» Click Continue.

Categorical Regression

» Select Inversion base height through Day of the year, and click Define Scale in the

Categorical Regression dialog box.

Figure 9-28
Define Scale dialog box
—Optimal Scaling Level -Continue
" Spline Ordinal C “Qrdinal -
" Spline Nominal (OF Cancel
¢ Numeric Help |
= SEltE

Wegree; I2

[terion Kints: Iz

» Select Nominal as the optimal scaling level.

» Click Continue.

» Click Discretize in the Categorical Regression dialog box.
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Figure 9-29
Discretization dialog box

Categorical Regression: Discretization

Varables: Cortinue I

ozon{Unspecified)

ibh{Grouping 100) Cancel
dpa(Grouping 10)

vig(Grouping 10] Help

doy{Grouping 10)

Method: Grouping j Change |

—Grouping
€ Number of categories: I"
Distriboticm: &0 Hommal 0 Wriferm

* Egual intervals: I'I 8

Select ibh.

v

v

Select Equal intervals and type 100 as the interval length.

» Click Change.

v

Select dpg, vis, and doy.

v

Type 10 as the interval length.

» Click Change.

v

Select temp.

v

Type 1.8 as the interval length.
» Click Change.
» Click Continue.

» Click Plots in the Categorical Regression dialog box.
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Plots dialog

Categorical Regression- Plots E2

ozon
ibh
d!:g
vis
temp
day

box

Transformation Plots: Corltlnue

Cancel |
- F

Besidual Plots:

o

Select transformation plots for ibh through doy.

Click Continue.

Click OK in the Categorical Regression dialog box.

Figure 9-31
Model summary
Adjusted
Multiple R | R Sguare | R Square
841 826 793

Dependent Variable: Daily ozone level
Predictors: Inversion base height Pressure gradient (mm Hag)
Visibility (miles) Temperature (degrees F) Day of the year

Categorical Regression

Treating all predictors as nominal yields an R2 of 0.886. This large amount of variance
accounted for is not surprising because nominal treatment imposes no restrictions on
the quantifications. However, interpreting the results can be quite difficult.
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Figure 9-32
Regression coefficients (all predictors nominal)
Standardized
Coefficients
Beta Std. Errar dr F Sig.
Inversion base height -.209 026 42 144 187 000
E'rge}ss”re gradient (mm 307 028 16 | 123227 000
Visibility (miles) -216 026 17 69.528 000
Temperature (degrees F) 5as 027 36 468.542 000
Day ofthe year -.408 029 36 203.250 000

Dependent Variable: Daily ozone level

This table shows the standardized regression coefficients of the predictors. A common
mistake made when interpreting these values involves focusing on the coefficients
while neglecting the quantifications. You cannot assert that the large positive value
of the Temperature coefficient implies that as temperature increases, predicted Ozone

increases.

Similarly, the negative coefficient for Inversion base height does not suggest that as
Inversion base height increases, predicted Ozone decreases. All interpretations must be
relative to the transformed variables. As the quantifications for Temperature increase,
or as the quantifications for Inversion base height decrease, predicted Ozone increases.
To examine the effects of the original variables, you must relate the categories to

the quantifications.
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Figure 9-33
Transformation plot of Inversion base height (nominal)
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The transformation plot of Inversion base height shows no apparent pattern. As
evidenced by the jagged nature of the plot, moving from low categories to high
categories yields fluctuations in the quantifications in both directions. Thus, describing
the effects of this variable requires focusing on the individual categories. Imposing
ordinal or linear restrictions on the quantifications for this variable might significantly
reduce the fit.
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Figure 9-34
Transformation plot of Pressure gradient (nominal)
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This figure displays the transformation plot of Pressure gradient. The initial
discretized categories (/ through 6) receive small quantifications and thus have
minimal contributions to the predicted response. The next three categories receive
somewhat higher, positive values, resulting in a moderate increase in predicted ozone.

The quantifications decrease up to category /6, where Pressure gradient has its
greatest decreasing effect on predicted ozone. Although the line increases after this
category, using an ordinal scaling level for Pressure gradient may not significantly
reduce the fit, while simplifying the interpretations of the effects. However, the
importance measure of 0.04 and the regression coefficient for Pressure gradient
indicates that this variable is not very useful in the regression.
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Figure 9-35
Transformation plot of Visibility (nominal)
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The transformation plot of Visibility, like that for Inversion base height, shows no
apparent pattern. Imposing ordinal or linear restrictions on the quantifications for this
variable might significantly reduce the fit.
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Figure 9-36
Transformation plot of Temperature (nominal)
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The transformation plot of Temperature displays an alternative pattern. As the
categories increase, the quantifications tend to increase. As a result, as Temperature
increases, predicted ozone tends to increase. This pattern suggests scaling Temperature
at the ordinal level.
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Figure 9-37
Transformation plot of Day of the year (nominal)
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This figure shows the transformation plot of Day of the year. The quantifications
tend to decrease up to category /9, at which point they tend to increase, yielding a
U-shape. Considering the sign of the regression coefficient for Day of the year, the
initial categories (/ through 5) receive quantifications that have a decreasing effect on
predicted ozone. From category 6 onward, the effect of the quantifications on predicted
ozone gets more increasing, reaching a maximum around category /9.

Beyond category /9, the quantifications tend to decrease the predicted ozone.
Although the line is quite jagged, the general shape is still identifiable. Thus, the
transformation plots suggest scaling Temperature at the ordinal level while keeping all
other predictors nominally scaled.
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To recompute the regression, scaling Temperature at the ordinal level, recall the
Categorical Regression dialog box.
Figure 9-38
Define Scale dialog box
Categorical Regression: Define Scale
—Optimal Scaling Level - - Tt
" Spline Ordinal i
" Spline Nominal Cancel
" Mumeric Help |
= Splime
Weqee: I2 [rterion Krmte: IE
» Select Temperature and click Define Scale.
» Select Ordinal as the optimal scaling level.
» Click Continue.
» Click Save in the Categorical Regression dialog box.
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Figure 9-39
Save dialog box

Categorical Regression

Categorical Regression: Save

Digcretized D ata

[] Create discretized data

Transformed W ariables

[]5ave predicted values ta the active datasst

[ 5ave tesiduals ta the active datasst

[V]:5 ave hransformed vanables o the active dataset

[] Create tranzsformed variables

» Select Save transformed variables to the active dataset in the Transformed Variables

group.

» Click Continue.

» Click OK in the Categorical Regression dialog box.

Model summary for regression with Temperature (ordinal)

Figure 9-40
Adjusted
Multiple R | R Square R Square
835 875 791

Dependent Variable: Daily ozone level
Predictors: Inversion base height Pressure gradient (mm Hag)
Visihility (miles) Temperature (degrees F) Day of the year

This model results in an R2 of 0.875, so the variance accounted for decreases negligibly
when the quantifications for Temperature are restricted to be ordered.
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Figure 9-41
Regression coefficients with Temperature (ordinal)
Standardized
Coefficients
Beta Std. Error df F Sig.
Inversion base height -.300 026 42 132.628 .000
Erge)ssure gradient (mm 204 028 16 | 111757 000
Visibility (miles) -221 026 17 72.360 .000
Temperature (degrees F) 619 027 20 517.262 000
Day of the year -372 028 36 173.158 000

Dependent Variable: Daily ozone level

This table displays the coefficients for the model in which Temperature is scaled as
ordinal. Comparing the coefficients to those for the model in which Temperature is
scaled as nominal, no large changes occur.

Figure 9-42
Correlations, importance, and tolerance
Correlations Tolerance
After Before
Transfor Transfor
Zero-Order Partial Part Importance mation mation
Inversion base height -435 -633 -.290 150 931 596
E‘r;ssure gradient (mm 435 601 266 045 319 859
Visibility (miles) -352 -517 -214 089 939 752
Temperature (degrees F) 806 B850 573 571 855 580
Day of the year -.340 -.683 =331 145 T 801

Dependent Variable: Daily ozone level

Moreover, the importance measures suggest that Temperature is still much more
important to the regression than the other variables. Now, however, as a result of the
ordinal scaling level of Temperature and the positive regression coefficient, you can
assert that as Temperature increases, predicted ozone increases.
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Figure 9-43
Transformation plot of Temperature (ordinal)
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The transformation plot illustrates the ordinal restriction on the quantifications for
Temperature. The jagged line from the nominal transformation is replaced here by
a smooth ascending line. Moreover, no long plateaus are present, indicating that
collapsing categories is not needed.

Optimality of the Quantifications

The transformed variables from a categorical regression can be used in a standard
linear regression, yielding identical results. However, the quantifications are optimal
only for the model that produced them. Using a subset of the predictors in linear
regression does not correspond to an optimal scaling regression on the same subset.

For example, the categorical regression that you have computed has an R2 of 0.875.
You have saved the transformed variables, so in order to fit a linear regression using
only Temperature, Pressure gradient, and Inversion base height as predictors, from
the menus choose:

Analyze
Regression
Linear...
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Figure 9-44

Linear Regression dialog box

Il Linear Regression
7 p—
< Daily ozone level [ozor | @ Day ozone level Quar o |
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< Inversion base height E “#> Pressure gradient {mm He
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@ Visibility {miles) Cuantifi Method: Erter -
& Temperature (degrees
@ Day of the year Quant Selection Variable:

| N
Case Labelz:
WLS Weight:
Statistics... | Flots. .. | Save... | Options... |

» Select Daily ozone level Quantification as the dependent variable.

» Select Inversion base height Quantification, Pressure gradient (mm Hg) Quantification,
and Temperature (degrees F) Quantification as independent variables.
» Click OK.

Figure 9-45
Model summary for regression with subset of optimally scaled predictors

Adjusted Std. Error of

Model R R Square R Square the Estimate

1 B56= 733 730 51993
a. Predictors: (Constant), Temperature (degrees F)

Quantification, Pressure gradient (mm Hg)
CQuantification, Inversion base height Quantification

Using the quantifications for the response, Temperature, Pressure gradient, and
Inversion base height in a standard linear regression results in a fit of 0.733. To
compare this to the fit of a categorical regression using just those three predictors,
recall the Categorical Regression dialog box.
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Categorical Regression dialog box

Il Categorical Regression
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Categorical Regression

» Deselect Visibility (miles) and Day of the year as independent variables.

» Click OK.
Figure 9-47

Model summary for categorical regression on three predictors

Multiple R | R Square

Adjusted
R Square

893 798

740

Dependent Variable: Daily
Predictors: Inversion base

ozone level
height Pressure

gradient (mm Hg) Temperature (degrees F)

The categorical regression analysis has a fit of 0.798, which is better than the fit of
0.733. This demonstrates the property of the scalings that the quantifications obtained
in the original regression are only optimal when all five variables are included in

the model.
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Effects of Transformations

Transforming the variables makes a nonlinear relationship between the original
response and the original set of predictors linear for the transformed variables.
However, when there are multiple predictors, pairwise relationships are confounded by
the other variables in the model.

To focus your analysis on the relationship between Daily ozone level and Day of the
year, begin by looking at a scatterplot. From the menus choose:

Graphs
Scatter/Dot...

Figure 9-48
Scatter/Dot dialog box

Scatter/Dot

o
- oo Simple . b atrix Simple

o

S| Scatter ] | Scatter Dot
» ol Ovwerlay L] 3D Help
77| Scatter Scatter

» Click Define.
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Figure 9-49
Simple Scatterplot dialog box
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» Select Daily ozone level as the y-axis variable and Day of the year as the x-axis variable.

» Click OK.



158

Chapter 9

Figure 9-50
Scatterplot of Daily ozone level and Day of the year
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This figure illustrates the relationship between Daily ozone level and Day of the year.
As Day of the year increases to approximately 200, Daily ozone level increases.
However, for Day of the year values greater than 200, Daily ozone level decreases.
This inverted U pattern suggests a quadratic relationship between the two variables. A
linear regression cannot capture this relationship.

» To see a best-fit line overlaid on the points in the scatterplot, activate the graph by
double-clicking on it.

» Select a point in the Chart Editor.

» Click the Add Fit Line at Total tool, and close the Chart Editor.
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Figure 9-51
Scatterplot showing best-fit line
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A linear regression of Daily ozone level on Day of the year yields an R? of 0.004. This
fit suggests that Day of the year has no predictive value for Daily ozone level. This

is not surprising, given the pattern in the figure. By using optimal scaling, however,
you can linearize the quadratic relationship and use the transformed Day of the year
to predict the response.
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Figure 9-52
Categorical Regression dialog box

Il Categorical Regression
& vh a Dependent Variable: —

4 Inversion base heig I':'ZDH[NU"'"E“C}' =

< Pressure gradient Define Scale... | Missing...
< Visibilty (miles) [vis]
® Temperature (degre Independent Varizble(s)
® Day ozone level O line ordinal 2 2)
& Inversion base heig
@ Pressure gradient
@ Vigibility (miles) Gua E Blote
<@ Temperature (dzgre o
@ Day of the year Quz
< Daily ozone level Q|
> Inversion base heig
&> Pressure gradiert {f

it Tamnarsh ra H,,.,,.‘;I DEﬂI"I& Scale.. |
OK | Paste | Reset | Camcel | Hep |

Output

Save

il

To obtain a categorical regression of Daily ozone level on Day of the year, recall the
Categorical Regression dialog box.

» Deselect Inversion base height through Temperature (degrees F) as independent
variables.

» Select Day of the year as an independent variable.

» Click Define Scale.

Figure 9-53
Define Scale dialog box

Categorical Regression: Define Scale E
~Optimal Sealing Level

" Spline Ordinal " Ordinal

¢ Spline Nominal Cancel

" Numeric Help |
= Splime
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» Select Nominal as the optimal scaling level.
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» Click Continue.

» Click Discretize in the Categorical Regression dialog box.

Figure 9-54
Discretization dialog box
Categorical Regression: Discretization E3
Variables: [Eortinue I
ozon{Unspecified
Cancel |

Help

Method: Grouping j Change |

—Grouping
£ Number of categories: I"
Iistritticrie e Hormel e ko

% Egual intervals: I'I 0

Select doy.

Select Equal intervals.

Type 10 as the interval length.
Click Change.

Click Continue.

vV v v v v VvV

Click Plots in the Categorical Regression dialog box.
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Figure 9-55
Plots dialog box
3;;“ sforrnation Plats: Continue |

Cancel

Help

Besidual Flots:

» Select doy for transformation plots.
» Click Continue.

» Click OK in the Categorical Regression dialog box.

Figure 9-56
Model summary for categorical regression of Daily ozone level on Day of the year

Adjusted
Multiple R | R Sguare R Square
T4 549 494

Dependent Variable: Daily ozone level
Predictors: Day of the year

The optimal scaling regression treats Daily ozone level as numerical and Day of the
year as nominal. This results in an R2 of 0.549. Although only 55% of the variation in
Daily ozone level is accounted for by the categorical regression, this is a substantial
improvement over the original regression. Transforming Day of the year allows for the
prediction of Daily ozone level.
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Figure 9-57
Transformation plot of Day of the year (nominal)
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This figure displays the transformation plot of Day of the year. The extremes of Day of
the year both receive negative quantifications, whereas the central values have positive
quantifications. By applying this transformation, the low and high Day of the year
values have similar effects on predicted Daily ozone level.
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Figure 9-58
Simple Scatterplot dialog box
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To see a scatterplot of the transformed variables, recall the Simple Scatterplot dialog
box, and click Reset to clear your previous selections.

» Select Daily ozone level Quantification [TRAI_3] as the y-axis variable and Day of
the year Quantification [TRA2_3] as the x-axis variable.

» Click OK.
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Scatterplot of the transformed variables
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Categorical Regression

This figure depicts the relationship between the transformed variables. An increasing
trend replaces the inverted U. The regression line has a positive slope, indicating that
as transformed Day of the year increases, predicted Daily ozone level increases.
Using optimal scaling linearizes the relationship and allows interpretations that would

otherwise go unnoticed.

Recommended Readings

See the following texts for more information on categorical regression:

Buja, A. 1990. Remarks on functional canonical variates, alternating least squares
methods and ACE. Annals of Statistics, 18, 1032—1069.
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Hastie, T., R. Tibshirani, and A. Buja. 1994. Flexible discriminant analysis. Journal of
the American Statistical Association, 89, 1255-1270.

Hayashi, C. 1952. On the prediction of phenomena from qualitative data and the
quantification of qualitative data from the mathematico-statistical point of view.
Annals of the Institute of Statitical Mathematics, 2, 93-96.

Kruskal, J. B. 1965. Analysis of factorial experiments by estimating monotone
transformations of the data. Journal of the Royal Statistical Society Series B, 27,
251-263.

Meulman, J. J. 2003. Prediction and classification in nonlinear data analysis:
Something old, something new, something borrowed, something blue. Psychometrika,
4, 493-517.

Ramsay, J. O. 1989. Monotone regression splines in action. Statistical Science, 4,
425-441.

Vander Kooij, A. J., and J. J. Meulman. 1997. MURALS: Multiple regression and
optimal scaling using alternating least squares. In: Softstat *97, F. Faulbaum, and W.
Bandilla, eds. Stuttgart: Gustav Fisher, 99—-106.

Winsberg, S., and J. O. Ramsay. 1980. Monotonic transformations to additivity using
splines. Biometrika, 67, 669-674.

Winsberg, S., and J. O. Ramsay. 1983. Monotone spline transformations for dimension
reduction. Psychometrika, 48, 575-595.

Young, F. W., J. De Leeuw, and Y. Takane. 1976. Regression with qualitative and
quantitative variables: An alternating least squares method with optimal scaling
features. Psychometrika, 41, 505-528.
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Categorical Principal Components
Analysis

Categorical principal components analysis can be thought of as a method of dimension
reduction. A set of variables is analyzed to reveal major dimensions of variation.
The original data set can then be replaced by a new, smaller data set with minimal
loss of information. The method reveals relationships among variables, among cases,
and among variables and cases.

The criterion used by categorical principal components analysis for quantifying
the observed data is that the object scores (component scores) should have large
correlations with each of the quantified variables. A solution is good to the extent that
this criterion is satisfied.

Two examples of categorical principal components analysis will be presented.

The first employs a rather small data set useful for illustrating the basic concepts
and interpretations associated with the procedure. The second example examines
a practical application.

Example: Examining Interrelations of Social Systems

This example examines Guttman’s (Guttman, 1968) adaptation of a table by Bell (Bell,
1961). The data are also discussed by Lingoes (Lingoes, 1968).

Bell presented a table to illustrate possible social groups. Guttman used a portion
of this table, in which five variables describing such things as social interaction,
feelings of belonging to a group, physical proximity of members, and formality of the
relationship were crossed with seven theoretical social groups, including crowds (for
example, people at a football game), audiences (for example, people at a theater or
classroom lecture), public (for example, newspaper or television audiences), mobs (like
a crowd but with much more intense interaction), primary groups (intimate), secondary

167
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groups (voluntary), and the modern community (loose confederation resulting from
close physical proximity and a need for specialized services).

The following table shows the variables in the data set resulting from the
classification into seven social groups used in the Guttman-Bell data, with their variable
labels and the value labels (categories) associated with the levels of each variable. This
data set can be found in guttman.sav, located in the \tutorial\sample_files\ subdirectory
of the directory in which you installed SPSS. In addition to selecting variables to be
included in the computation of the categorical principal components analysis, you can
select variables that are used to label objects in plots. In this example, the first five
variables in the data are included in the analysis, while cluster is used exclusively as
a labeling variable. When you specify a categorical principal components analysis,
you must specify the optimal scaling level for each analysis variable. In this example,
an ordinal level is specified for all analysis variables.

Table 10-1

Variables in the Guttman-Bell data set

Variable name Variable label Value label

intnsity Intensity of interaction Slight, low, moderate, high

frquency Frequency of interaction Slight, nonrecurring, infrequent,
frequent

blonging Feeling of belonging None, slight, variable, high

proxmity Physical proximity Distant, close

formlity Formality of relationship No relationship, formal, informal

cluster Crowds, audiences, public, mobs,
primary groups, secondary groups,
modern community

Running the Analysis

» To produce categorical principal components output for this data set, from the menus
choose:
Analyze

Data Reduction
Optimal Scaling...



169

Categorical Principal Components Analysis

Figure 10-1
Optimal Scaling dialog box
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» Select Some variable(s) not multiple nominal in the Optimal Scaling Level group.

» Click Define.

Figure 10-2
Categorical Principal Components dialog box
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Save,
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» Select Intensity of interaction through Formality of relationship as analysis variables.



170

Chapter 10

» Click Define Scale and Weight.

Figure 10-3
Define Scale and Weight dialog box

Categorical Principal Components: Define Scale and Weight [E3

» Select Ordinal in the Optimal Scaling Level group.
» Click Continue.

» Select cluster as a labeling variable in the Categorical Principal Components dialog
box.

» Click Output.
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Figure 10-4
Output dialog box
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Select Object scores and deselect Correlations of transformed variables in the Tables
group.

Choose to produce category quantifications for intnsity (Intensity of interaction)
through formlity (Formality of relationship).

Choose to label object scores by cluster.
Click Continue.

Click Object in the Plots group of the Categorical Principal Components dialog box.
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Figure 10-5
Object and Variable Plots dialog box

Categorical Principal Components: Object and Variable Plots

» Select Objects and variables (biplot) in the Plots group.

» Choose to label objects by Variable in the Label Objects group, and then select cluster
as the variable to label objects by.

» Click Continue.

» Click Category in the Plots group of the Categorical Principal Components dialog box.
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Figure 10-6
Category Plots dialog box
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» Choose to produce joint category plots for intnsity (Intensity of interaction) through
formlity (Formality of relationship).

» Click Continue.

» Click OK in the Categorical Principal Components dialog box.

Number of Dimensions

These figures show some of the initial output for the categorical principal components
analysis. After the iteration history of the algorithm, the model summary, including
the eigenvalues of each dimension, is displayed. These eigenvalues are equivalent to
those of classical principal components analysis. They are measures of how much
variance is accounted for by each dimension.
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Figure 10-7
Iteration history

Wariance Accounted
For Loss

Restriction of

Centroid to

Centroid Wector

Iteration Number Total Increase Total Coordinates Coordinates
0 4 515315 000000 | 5484685 4075583 1.409101
3= 4 726009 000008 | 5273991 4273795 1.000196

3. The iteration process stopped because the convergence testvalue was reached.

Figure 10-8
Model summary
Wariance Accounted For
Cronbach’s Total
Dimension Alpha (Eigenvalue) | % of Variance
1 881 3.389 67.774
2 315 1.337 26.746
Total 9862 4726 94.520
a. Total Cronbach’s Alpha is based on the total
Eigenvalue.

The eigenvalues can be used as an indication of how many dimensions are needed. In
this example, the default number of dimensions, 2, was used. Is this the right number?
As a general rule, when all variables are either single nominal, ordinal, or numerical,
the eigenvalue for a dimension should be larger than 1. Since the two-dimensional
solution accounts for 94.52% of the variance, a third dimension probably would not
add much more information.

For multiple nominal variables, there is no easy rule of thumb to determine the
appropriate number of dimensions. If the number of variables is replaced by the total
number of categories minus the number of variables, the above rule still holds. But this
rule alone would probably allow more dimensions than are needed. When choosing the
number of dimensions, the most useful guideline is to keep the number small enough
so that meaningful interpretations are possible. The model summary table also shows
Cronbach’s alpha (a measure of reliability), which is maximized by the procedure.
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Quantifications

For each variable, the quantifications, the vector coordinates, and the centroid
coordinates for each dimension are presented. The quantifications are the values
assigned to each category. The centroid coordinates are the average of the object scores
of objects in the same category. The vector coordinates are the coordinates of the
categories when they are required to be on a line, representing the variable in the object
space. This is required for variables with the ordinal and numerical scaling level.

Figure 10-9
Quantifications for Intensity of interaction
Centroid Coordinates Wector Coordinates
Dimension Dimension

Category Frequency | Quantification 1 2 1 2
SLIGHT 2 -1.530 -1.496 308 -1.510 208
LOW 2 362 392 202 358 -.049
MODERATE 1 379 188 -1.408 374 -051
HIGH 2 978 1.010 194 965 -133

Variable Principal Mormalization.

Glancing at the quantifications in the joint plot of the category points, you can see that
some of the categories of some variables were not clearly separated by the categorical
principal components analysis as cleanly as would have been expected if the level had
been truly ordinal. Variables Intensity of interaction and Frequency of interaction, for
example, have equal or almost equal quantifications for their two middle categories.
This kind of result might suggest trying alternative categorical principal components
analyses, perhaps with some categories collapsed, or perhaps with a different level

of analysis, such as (multiple) nominal.
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Figure 10-10
Joint plot category points
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The joint plot of category points resembles the plot for the component loadings, but it
also shows where the endpoints are located that correspond to the lowest quantifications
(for example, slight for Intensity of interaction and none for Feeling of belonging).
The two variables measuring interaction, Intensity of interaction and Frequency of
interaction, appear very close together and account for much of the variance in
dimension 1. Formality of Relationship also appears close to Physical Proximity.

By focusing on the category points, you can see the relationships even more clearly.
Not only are Intensity of interaction and Frequency of interaction close, but the
directions of their scales are similar; that is, slight intensity is close to slight frequency,
and frequent interaction is near high intensity of interaction. You also see that close
physical proximity seems to go hand-in-hand with an informal type of relationship,
and physical distance is related to no relationship.
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Object Scores

You can also request a listing and plot of object scores. The plot of the object scores
can be useful for detecting outliers, detecting typical groups of objects, or revealing
some special patterns.

The object scores table shows the listing of object scores labeled by social group
for the Guttman-Bell data. By examining the values for the object points, you can
identify specific objects in the plot.

Figure 10-11
Object scores
Dimension

cluster 1 2
CROWDS -1.266 1.816
AUDIENCES 284 A44
FUBLIC 1726 -1.201
MoBS 931 229
PRIMARY GROUPS 1.089 158
SECONDARY GROUPS 188 -1.408
MODERN COMMUNITY 500 -.038

Variable Principal Normalization.

The first dimension appears to separate CROWDS and PUBLIC, which have relatively
large negative scores, from MOBS and PRIMARY GROUPS, which have relatively
large positive scores. The second dimension has three clumps: PUBLIC and
SECONDARY GROUPS with large negative values, CROWDS with large positive
values, and the other social groups in between. This is easier to see by inspecting the
plot of the object scores.
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Figure 10-12
Object scores plot
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In the plot, you see PUBLIC and SECONDARY GROUPS at the bottom, CROWDS
at the top, and the other social groups in the middle. Examining patterns among
individual objects depends on the additional information available for the units of
analysis. In this case, you know the classification of the objects. In other cases,

you can use supplementary variables to label the objects. You can also see that the
categorical principal components analysis does not separate MOBS from PRIMARY
GROUPS. Although most people usually don’t think of their families as mobs, on the
variables used, these two groups received the same score on four of the five variables!
Obviously, you might want to explore possible shortcomings of the variables and
categories used. For example, high intensity of interaction and informal relationships
probably mean different things to these two groups. Alternatively, you might consider
a higher dimensional solution.

Component Loadings

This figure shows the plot of component loadings. The vectors (lines) are relatively
long, indicating again that the first two dimensions account for most of the variance of
all of the quantified variables. On the first dimension, all variables have high (positive)
component loadings. The second dimension is correlated mainly with the quantified
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variables Feeling of belonging and Physical Proximity, in opposite directions. This
means that objects with a large negative score in dimension 2 will have a high score in
feeling of belonging and a low score in physical proximity. The second dimension,
therefore, reveals a contrast between these two variables while having little relation
with the quantified variables Intensity of interaction and Frequency of interaction.

Figure 10-13
Component loadings
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To examine the relation between the objects and the variables, look at the biplot of
objects and component loadings. The vector of a variable points into the direction of
the highest category of the variable. For example, for Physical Proximity and Feeling of
belonging the highest categories are close and high, respectively. Therefore, CROWDS
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are characterized by close physical proximity and no feeling of belonging, and
SECONDARY GROUPS, by distant physical proximity and a high feeling of belonging.

Figure 10-14
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Additional Dimensions

Increasing the number of dimensions will increase the amount of variation accounted
for and may reveal differences concealed in lower dimensional solutions. As noted
previously, in two dimensions MOBS and PRIMARY GROUPS cannot be separated.
However, increasing the dimensionality may allow the two groups to be differentiated.

Running the Analysis

» To obtain a three-dimensional solution, recall the Categorical Principal Components
dialog box.

» Type 3 as the number of dimensions in the solution.

» Click OK in the Categorical Principal Components dialog box.
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Model Summary
Figure 10-15
Model summary
Wariance Accounted For
Cronbach’'s Total
Dimension Alpha (Eigenvalue) % of Variance
1 B85 3424 68.480
2 -232 844 16.871
3 -459 73z 14.649
Total 1.000= 5.000 99.999
a. Total Cronbach’s Alpha is based on the total
Eigenvalue.

A three-dimensional solution has eigenvalues of 3.424, 0.844, and 0.732, accounting
for nearly all of the variance.

Object Scores

The object scores for the three-dimensional solution are plotted in a scatterplot matrix.
In a scatterplot matrix, every dimension is plotted against every other dimension in

a series of two-dimensional scatterplots. Note that the first two eigenvalues in three
dimensions are not equal to the eigenvalues in the two-dimensional solution; in other
words, the solutions are not nested. Because the eigenvalues in dimensions 2 and

3 are now smaller than 1 (giving a Cronbach’s alpha that is negative), you should
prefer the two-dimensional solution. The three-dimensional solution is included for
purposes of illustration.
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Figure 10-16
Three-dimensional object scores scatterplot matrix
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The top row of plots reveals that the first dimension separates PRIMARY GROUPS and
MOBS from the other groups. Notice that the order of the objects along the vertical
axis does not change in any of the plots in the top row; each of these plots employs
dimension 1 as the y axis.

The middle row of plots allows for interpretation of dimension 2. The second
dimension has changed slightly from the two-dimensional solution. Previously, the
second dimension had three distinct clumps, but now the objects are more spread
out along the axis.

The third dimension helps to separate MOBS from PRIMARY GROUPS, which did
not occur in the two-dimensional solution.

Look more closely at the dimension 2 versus dimension 3 and dimension 1 versus
dimension 2 plots. On the plane defined by dimensions 2 and 3, the objects form a
rough rectangle, with CROWDS, MODERN COMMUNITY, SECONDARY GROUPS,
and PUBLIC at the vertices. On this plane, MOBS and PRIMARY GROUPS appear to
be convex combinations of PUBLIC-CROWDS and SECONDARY GROUPS-MODERN
COMMUNITY, respectively. However, as previously mentioned, they are separated
from the other groups along dimension 1. AUDIENCES is not separated from the
other groups along dimension 1 and appears to be a combination of CROWDS and
MODERN COMMUNITY.
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Component Loadings
Figure 10-17
Three-dimensional component loadings
Dimension
1 2 3

Intensity of interaction 830 -005 -201
Frequency of interaction a1 -643 BB
Feeling of belonging 930 -002 -197
Physical Proximity 519 656 549
Formality of Relationship a1 004 -193

Knowing how the objects are separated does not reveal which variables correspond
to which dimensions. This is accomplished using the component loadings. The first
dimension corresponds primarily to Feeling of belonging, Intensity of interaction, and
Formality of Relationship; the second dimension separates Frequency of interaction
and Physical Proximity; and the third dimension separates these from the others.

Example: Symptomatology of Eating Disorders

Eating disorders are debilitating illnesses associated with disturbances in eating
behavior, severe body image distortion, and an obsession with weight that affects
the mind and body simultaneously. Millions of people are affected each year, with
adolescents particularly at risk. Treatments are available and most are helpful when
the condition is identified early.

A health professional can attempt to diagnose an eating disorder through a
psychological and medical evaluation. However, it can be difficult to assign a patient
to one of several different classes of eating disorders because there is no standardized
symptomatology of anorectic/bulimic behavior. Are there symptoms that clearly
differentiate patients into the four groups? Which symptoms do they have in common?

In order to try to answer these questions, researchers (Van der Ham, Meulman, Van
Strien, and Van Engeland, 1997) made a study of 55 adolescents with known eating
disorders, as shown in the following table.
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Table 10-2
Patient diagnoses

Diagnosis

Anorexia nervosa

Anorexia with bulimia nervosa
Bulimia nervosa after anorexia
Atypical eating disorder

Total

Number of Patients

Each patient was seen four times over four years, for a total of 220 observations. At
each observation, the patients were scored for each of the 16 symptoms outlined in
the following table. Symptom scores are missing for patient 71 at time 2, patient
76 at time 2, and patient 47 at time 3, leaving 217 valid observations. The data can
be found in anorectic.sav, located in the \tutorial\sample_files\ subdirectory of the
directory in which you installed SPSS.

Modified Morgan-Russell subscales measuring well-being

Table 10-3

Variable Variable label

name

weight Body weight

mens Menstruation

fast Restriction of food
intake (fasting)

binge Binge eating

vomit Vomiting

purge Purging

hyper Hyperactivity

fami Family relations

eman Emancipation from
family

frie Friends

school School/employment
record

satt Sexual attitude

Lower end (scorel)

Outside normal range
Amenorrhea

Less than 1200 calories

Greater than once a week
Greater than once a week
Greater than once a week
Not able to be at rest
Poor

Very dependent

No good friends
Stopped school/work

Inadequate

Upper end (score 3 or 4)

Normal
Regular periods

Normal/regular meals

No bingeing

No vomiting

No purging

No hyperactivity
Good

Adequate

Two or more good friends

Moderate to good record

Adequate
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Variable
name

sbeh

mood

preo

body

Variable label

Sexual behavior
Mental state (mood)

Preoccupation with
food and weight

Body perception

Categorical Principal Components Analysis

Lower end (scorel)

Inadequate
Very depressed
Complete

Disturbed

Upper end (score 3 or 4)

Can enjoy sex
Normal

No preoccupation

Normal

Principal components analysis is ideal for this situation, since the purpose of the study
is to ascertain the relationships between symptoms and the different classes of eating
disorders. Moreover, categorical principal components analysis is likely to be more
useful than classical principal components analysis because the symptoms are scored
on an ordinal scale.

Running the Analysis

In order to properly examine the structure of the course of illness for each diagnosis,
you will want to make the results of the projected centroids table available as data for
scatterplots. You can accomplish this using the Output Management System.

» To begin an OMS request, from the menus choose:

Utilities

OMS Control Panel...
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Figure 10-18
Output Management System Control Panel

Il Output Management System Control Panel E

| status [ @ | Types | Commands | subtypes | Labels | Destination |1 e |

il
d Al

Select Tables as the output type.
Select CATPCA as the command.

Select Projected Centroids as the table type.

vV v v VY

Select File in the Output Destinations group and type projected_centroids.sav as the
file name.

» Click Options.
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Figure 10-19
Options dialog box

OMS: Options

TableMumber_1

» Select SPSS Data File as the output format.
» Type TableNumber_1 as the table number variable.

» Click Continue.
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Figure 10-20
Output Management System Control Panel

Il Output Management System Control Panel

5

few | [Tobes  [CATPCA [Proecied Conirais| | procted_cortrods

Anti image Matrices
Applied Parameter Estimates
Area Under the Curve

» Click Add.

» Click OK, and then click OK to confirm the OMS session.

The Output Management System is now set to write the results of the projected
centroids table to the file projected_centroids.sav.

» To produce categorical principal components output for this data set, from the menus
choose:
Analyze

Data Reduction
Optimal Scaling...
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Optimal Scaling dialog box

optimal Scaling

—Optimal Scaling Level

™ Al variables muttiple nominal

" Some vanable(s) not muttiple nominak

r— Number of Sets of Varables
" One set
" Multiple sets

— Selected Analysiz

ultiple Corespondence Analysis

Categorical Principal Components

Hienlinean Canomicall Camelatian

Categorical Principal Components Analysis

» Select Some variable(s) not multiple nominal in the Optimal Scaling Level group.

» Click Define.

Figure 10-22
Categorical Principal Components dialog box

Il Categorical Principal Components

Analysis Variables:

® Time of interview ftime]
<#» Patient Diagnosis [diag
< Time/diagnosis interac

b Patient Number [numbs E

#> Diagnosis [diag?]

@tlmez Define Scale and Weight... |
Save,
Supplementary Varables:
Plots
Oect
DEfineSEale.. | Category.
Labeling Variables: Loading

Dimensions in salution:

o

0K | Peste | Besest |

Cancel |  Hep |

» Select Body weight through Body perception as analysis variables.
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» Click Define Scale and Weight.

Figure 10-23
Define Scale and Weight dialog box

Categorical Principal Components: Define Scale and Weight [E3

» Select Ordinal as the optimal scaling level.
» Click Continue.

» Select Time/diagnosis interaction as a supplementary variable and click Define Scale in
the Categorical Principal Components dialog box.

Figure 10-24
Define Scale dialog box

» Select Multiple nominal as the optimal scaling level.

» Click Continue.
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Figure 10-25
Categorical Principal Components dialog box
Il Categorical Principal Components
4> Diagnosis [diag?] Analysis Variables: Discretize... |
@time2 school(1 Ordinal) “
satt(1 Ordinal) _I Missing... |
sbeh({1 Ordinal)
mood{1 Ordinal) —| Options... |
preo(1 Ordinal) =l
Define Seale andlyEimht.. | _'I
Save..
Supplementary Varables: _I
tidi{Multiple nominal) Plots
Object... |

o

[Efitie Seale.,. | £g0ry. |

Labeling Variables: Lpading...

=

Dimensions in solution: IZ

oK | Paste | Beset | Concel | Hep |

» Select Time of interview through Patient number as labeling variables.

» Click Options.
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Figure 10-26
Options dialog box

Categorical Principal Components: Options

» Choose to label plots by Variable names or values.
» Click Continue.

» Click Output in the Categorical Principal Components dialog box.
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Figure 10-27
Output dialog box

Categorical Principal Components: Output

Categorical Principal Components Analysis

4.

— Tables Corti
¥ Object scores [~ Corelations of original variables =ontinue
¥ Component loadings ¥ Comelations of transformed variables Cancel
™ teration history [~ Variance accounted for Hel

p

Quantified Variables: Category Quantffications:

purge =] tic

hyper

fami E

eman

frie: Descriptive Statistics:

school

satt II

sheh - |

mood

pren Object Scores Options

tb'do'dy Include Cateqories OF:

i
&~ time
diag

Labeling Variables: number

*d“l‘;'; Label Object Scores By:

number I

Select Object scores in the Tables group.

Request category quantifications for fidi.

Choose to include categories of time, diag, and number.

Click Continue.

Click Save in the Categorical Principal Components dialog box.



Figure 10-28
Save dialog box

Categorical Principal Components: Save

Digcretized Data
[] Create discretized data

Datazet name:

Object Scores
[ 5ave to the active dataset

[] Create object scores

Datazet name:

) First:

Multiple naminal dimenzions: (&) Al

Transformed Y anables

[] Create vanables

Dataset name:

Approgimations
[ Save to the active dataset

[] Create approximations

Datazet name;

[ Continue H Cancel ][ Help

» In the Transformed Variables group, select Save to the active dataset.
» Click Continue.

» Click Object in the Categorical Principal Components dialog box.
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Figure 10-29
Object and Variable Plots dialog box

Categorical Principal Components: Object and Variable Plots

» Choose to label objects by Variable.
» Select time and diag as the variables to label objects by.
» Click Continue.

» Click Category in the Categorical Principal Components dialog box.
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Figure 10-30
Category Plots dialog box
Categorical Principal Components: Category Plots E2
weight Category Plots: ErrrE
mens e | ——l
fast Cancel
binge
vomit
purge Joint Category Plots: Help
hyper |
fami
eman
frie:
school r Transformation Plots
satt sheh -
sbeh mood =
mood preo =
preo —
body Dimensions for multiple nominal: IZ_
tidi
° ™ Include residual plots
r— Project Centroids Of
Orto:

Request category plots for #idi.

Request transformation plots for weight through body.
Choose to project centroids of tidi onto binge, satt, and preo.
Click Continue.

Click OK in the Categorical Principal Components dialog box.

The procedure results in scores for the subjects (with mean 0 and unit variance) and
quantifications of the categories that maximize the mean squared correlation of the
subject scores and the transformed variables. In the present analysis, the category
quantifications were constrained to reflect the ordinal information.
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Finally, to write the projected centroids table information to projected_centroids.sav,
you need to end the OMS request. Recall the OMS Control Panel.

Figure 10-31
Output Management System Control Panel

Il Output Management System Control Panel

| | 0| Types | Commands | Subtypes | Lsbels | Destination |
active Tables CATPCA PROJECTED Z\pubs\spss\datajo)
T G - I s

Agglomeration Schedule

Analysis Case Processing Summary =

Analysis of Dispersion

ANOVA

ANOVA Table

Anti image Matrices

Applied Parameter Estimates
Autoregression =l | area under the curve

» Click End.

» Click OK, and then click OK to confirm.

Transformation Plots

The transformation plots display the original category number on the horizontal axes;
the vertical axes give the optimal quantifications.
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Figure 10-32
Transformation plot for menstruation

Transformation: Menstruation

0.5

0.0

Quantifications

-0.5

I I I
1 2 3

Categories

Some variables, like Menstruation, obtained nearly linear transformations, so in this
analysis you may interpret them as numerical.
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Figure 10-33
Transformation plot for School/employment record

Transformation: Schoollemployment record
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The quantifications for other variables like School/employment record did not obtain
linear transformations and should be interpreted at the ordinal scaling level. The
difference between the second and third categories is much more important than that
between the first and second categories.
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Figure 10-34
Transformation plot for Binge eating

Transformation: Binge eating
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An interesting case arises in the quantifications for Binge eating. The transformation
obtained is linear for categories 1 through 3, but the quantified values for categories
3 and 4 are equal. This result shows that scores of 3 and 4 do not differentiate
between patients and suggests that you could use the numerical scaling level in a
two-component solution by recoding 4’s as 3’s.
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Model Summary
Figure 10-35
Model summary
Wariance Accounted For
Cronbach’s Total
Dimension Alpha (Eigenvalue) % of Variance
1 874 5 550 34690
2 g2z 1.857 12234
Total 9252 7.508 46.924
a. Total Cronbach’s Alpha is based on the total
Eigenvalue.

To see how well your model fits the data, look at the model summary. About 47%
of the total variance is explained by the two-component model, 35% by the first
dimension and 12% by the second. So, almost half of the variability on the individual
objects level is explained by the two-component model.

Component Loadings

To begin to interpret the two dimensions of your solution, look at the component
loadings. All variables have a positive component loading in the first dimension, which
means that there is a common factor that correlates positively with all of the variables.
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Figure 10-36
Component loadings plot
0.7s

Binge patighg

Yomiting
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025 Mental state (mood)
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Dimension 1

The second dimension separates the variables. The variables Binge eating, Vomiting,
and Purging form a bundle having large positive loadings in the second dimension.
These symptoms are typically considered to be representative of bulimic behavior.

The variables Emancipation from family, School/employment record, Sexual
attitude, Body weight, and Menstruation form another bundle, and you can include
Restriction of food intake (fasting) and Family relations in this bundle, because their
vectors are close to the main cluster, and these variables are considered to be anorectic
symptoms (fasting, weight, menstruation) or are psychosocial in nature (emancipation,
school/work record, sexual attitude, family relations). The vectors of this bundle are
orthogonal (perpendicular) to the vectors of binge, vomit, and purge, which means that
this set of variables is uncorrelated with the set of bulimic variables.

The variables Friends, Mental state (mood), and Hyperactivity do not appear to fit
very well into the solution. You can see this in the plot by observing the lengths of
each vector. The length of a given variable’s vector corresponds to its fit, and these
variables have the shortest vectors. Based on a two-component solution, you would
probably drop these variables from a proposed symptomatology for eating disorders.
They may, however, fit better in a higher dimensional solution.
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The variables Sexual behavior, Preoccupation with food and weight, and Body
perception form another theoretic group of symptoms, pertaining to how the patient
experiences his or her body. While correlated with the two orthogonal bundles of
variables, these variables have fairly long vectors and are strongly associated with

the first dimension and therefore may provide some useful information about the
“common” factor.

Object Scores

The following figure shows a plot of the object scores, in which the subjects are labeled
with their diagnosis category.

Figure 10-37
Object scores plot labeled by diagnosis
2
1 -
D —
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Dimension 1

This plot does not help to interpret the first dimension, because patients are not
separated by diagnosis along it. However, there is some information about the second
dimension. Anorexia subjects (1) and patients with atypical eating disorder (4) form a
group, located above subjects with some form of bulimia (2 and 3). Thus, the second
dimension separates bulimic patients from others, as you have also seen in the previous
section (the variables in the bulimic bundle have large positive component loadings
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in the second dimension). This makes sense, given that the component loadings of
the symptoms that are traditionally associated with bulimia have large values in the
second dimension.

This figure shows a plot of the object scores, in which the subjects are labeled with
their time of diagnosis.

Figure 10-38
Object scores labeled by time of interview
2

o @2

1
o® ac 4
2y

Dimension 2

Dimension 1

Labeling the object scores by time reveals that the first dimension has a relation to
time because there seems to be a progression of times of diagnosis from the 1’s
mostly to the left and others to the right. Note that you can connect the time points
in this plot by saving the object scores and creating a scatterplot using the dimension
1 scores on the x axis, the dimension 2 scores on the y axis, and setting the markers
using the patient numbers.

Comparing the object scores plot labeled by time with the one labeled by diagnosis
can give you some insight into unusual objects. For example, in the plot labeled by
time, there is a patient whose diagnosis at time 4 lies to the left of all other points in
the plot. This is unusual because the general trend of the points is for the later times
to lie further to the right. Interestingly, this point that seems out of place in time also
has an unusual diagnosis, in that the patient is an anorectic whose scores place the
patient in the bulimic cluster. By looking in the table of object scores, you find that
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this is patient 43, diagnosed with anorexia nervosa, whose object scores are shown in
the following table.

Table 10-4
Object scores for patient 43

Time Dimension1 Dimension 2

1 -2.031 1.250
2 —2.067 0.131
3 -1.575 —-1.467
4 —2.405 -1.807

The patient’s scores at time 1 are prototypical for anorectics, with the large negative
score in dimension 1 corresponding to poor body image and the positive score in
dimension 2 corresponding to anorectic symptoms or poor psychosocial behavior.
However, unlike the majority of patients, there is little or no progress in dimension 1.
In dimension 2, there is apparently some progress toward “normal” (around 0, between
anorectic and bulimic behavior), but then the patient shifts to exhibit bulimic symptoms.

Examining the Structure of the Course of lliness

To find out more about how the two dimensions were related to the four diagnosis
categories and the four time points, a supplementary variable Time/diagnosis
interaction was created by a cross-classification of the four categories of Patient
diagnosis and the four categories of Time of interview. Thus, Time/diagnosis
interaction has 16 categories, where the first category indicates the anorexia nervosa
patients at their first visit. The fifth category indicates the anorexia nervosa patients

at time point 2, and so on, with the sixteenth category indicating the atypical eating
disorder patients at time point 4. The use of the supplementary variable Time/diagnosis
interaction allows for the study of the courses of illness for the different groups over

time. The variable was given a multiple nominal scaling level, and the category points
are displayed in the following figure.
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Figure 10-39
Category points for time/diagnosis interaction
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Some of the structure is apparent from this plot: the diagnosis categories at time
point 1 clearly separate anorexia nervosa and atypical eating disorder from anorexia
nervosa with bulimia nervosa and bulimia nervosa after anorexia nervosa in the second
dimension. After that, it’s a little more difficult to see the patterns.

However, you can make the patterns more easily visible by creating a scatterplot
based on the quantifications. To do this, from the menus choose:

Graphs
Scatter/Dot...

Figure 10-40
Scatter/Dot dialog box

Scatter/Dot

- g || Simple . b atriz i | Simple

S| Scatter ] | Scatter Dat
- gl Qverlay 3D m
K Scatter Scatter -

» Click Define.
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Figure 10-41
Simple Scatterplot dialog box

Il Simple Scatterplot
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» Select Time/diagnosis interaction Quantification dimension 2 as the y-axis variable and
Time/diagnosis interaction Quantification dimension 1 as the x-axis variable.

» Choose to set markers by Patient Diagnosis.

» Click OK.
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Figure 10-42
Structures of the courses of illness
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» Then, to connect the points, double-click on the graph, and click the Add interpolation
line tool in the Chart Editor.

» Close the Chart Editor.
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Figure 10-43
Structures of the courses of illness
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By connecting the category points for each diagnostic category across time, the
patterns immediately suggest that the first dimension is related to time and the second,
to diagnosis, as you previously determined from the object scores plots.

However, this plot further shows that, over time, the illnesses tend to become more
alike. Moreover, for all groups, the progress is greatest between time points 1 and 2;
the anorectic patients show some more progress from 2 to 3, but the other groups
show little progress.
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Differential Development for Selected Variables

One variable from each bundle of symptoms identified by the component loadings
was selected as “representative” of the bundle. Binge eating was selected from the
bulimic bundle; sexual attitude, from the anorectic/psychosocial bundle; and body
preoccupation, from the third bundle.

In order to examine the possible differential courses of illness, the projections of
Time/diagnosis interaction on Binge eating, Sexual attitude, and Preoccupation with
food and weight were computed and plotted in the following figure.

Figure 10-44

Projected centroids of Time/diagnosis interaction on Binge eating, Sexual attitude, and
Preoccupation with food and weight
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This plot shows that at the first time point, the symptom binge eating separates bulimic
patients (2 and 3) from others (1 and 4); sexual attitude separates anorectic and atypical
patients (1 and 4) from others (2 and 3); and body preoccupation does not really
separate the patients. In many applications, this plot would be sufficient to describe the
relationship between the symptoms and diagnosis, but because of the complication

of multiple time points, the picture becomes muddled.
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In order to view these projections over time, you need to be able to plot the contents of
the projected centroids table. This is made possible by the OMS request that saved this
information to projected_centroids.sav.

Figure 10-45
Projected_centroids.sav
projected_centroids.sav - SPSS Data Editor H=] E3
File Edit Wiew Data Transform Analyze Graphs Utilites Add-ons Window Help
=@|al ®| o] || &l £l BEE sl
|1 : TableMumber_1 |'I
Label WVar1 [Bingeeating| Sexualattity Precccupat -
de onwithfood var
ndweight
1|Projected Centroids 1 683 -1.391 -.823
2|Projected Centroids 2 -1.419 -.383 -1.082
3| Projected Centroids 3 -1.650 -415 -1.233
4|Projected Centroids 4 504 -.854 -430
5|Projected Centroids 5 607 -421 -.018
6| Projected Centroids 6 -.386 347 077
T |Projected Centroids 7 - 126 AT 319
8|Projected Centroids 8 109 -.048 019
9|Projected Centroids 9 247 109 224
10| Projected Centroids 10 340 783 827
11| Projected Centroids 11 -337 716 406
T Ny R —— ™
Idle. |5PS5 Processor is ready [ [ v

The variables Bingeeating, Sexualattitude, and Preoccupationwithfoodandweight
contain the values of the centroids projected on each of the symptoms of interest. The
case number (1 through 16) corresponds to the time/diagnosis interaction. You will
need to compute new variables that separate out the Time and Diagnosis values.

From the menus choose:

Transform
Compute...
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Figure 10-46
Compute Variable dialog box

Il Compute Variable

» Type time as the target variable.
» Type trunc(($casenum—1)/4) + 1 as the numeric expression.

» Click OK.



213

Categorical Principal Components Analysis

Figure 10-47
Compute Variable dialog box

Il Compute Variable

Recall the Compute Variable dialog box.
Type diagnosis as the target variable.
Type mod($casenum—1, 4) + 1 as the numeric expression.

Click OK.
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Figure 10-48
Simple Scatterplot dialog box

I simple Scatterplot
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» Finally, to view the projected centroids of time of diagnosis on binging over time, recall
the Simple Scatterplot dialog box and click Reset to clear your previous selections.

» Select Centroids Projected on Binge eating as the y-axis variable and time as the x-axis
variable.

» Choose to set markers by diagnosis.

» Click OK.
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Figure 10-49
Projected centroids of Time of diagnosis on Binge eating over time

File Edit “iew Options Elements Transform  Help

o BXY|LE[ClEEL kL3 E

J B == =S| Al —| B kb E LY
] diagnosis
1.000 os:
) 2.00
3.00
@ 0500 - O 400
£
&
[
L]
2 oA
£
| =
(=]
-
@ -0.500
E ™)
o
2
g
o
w  -1.000
=
e
5
=
[ 1]
O -1.500
-2.000
I T ] T | T T
1.00 150 2.00 250 3.00 350 400
time

2
i

| H:375, Wi 468 75 points

» Then, to connect the points, double-click on the graph, and click the Add interpolation
line tool in the Chart Editor.

» Close the Chart Editor.

With respect to binge eating, it is clear that the anorectic groups have different starting
values from the bulimic groups. This difference shrinks over time, as the anorectic
groups hardly change, while the bulimic groups show progress.
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Figure 10-50
Simple Scatterplot dialog box

I simple Scatterplot

» Recall the Simple Scatterplot dialog box.

» Deselect Centroids Projected on Binge eating as the y-axis variable and select
Centroids Projected on Sexual attitude as the y-axis variable.

» Click OK.
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Figure 10-51
Projected centroids of Time of diagnosis on Sexual attitude over time
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» Then, to connect the points, double-click on the graph, and click the Add interpolation
line tool in the Chart Editor.

» Close the Chart Editor.

With respect to sexual attitude, the four trajectories are more or less parallel over time,
and all groups show progress. The bulimic groups, however, have higher (better)
scores than the anorectic group.
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Figure 10-52
Simple Scatterplot dialog box

Il Simple Scatterplot

» Recall the Simple Scatterplot dialog box.

» Deselect Centroids Projected on Sexual attitude as the y-axis variable and select
Centroids Projected on Preoccupation with food and weight as the y-axis variable.

» Click OK.
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Figure 10-53
Projected centroids of Time of diagnosis on Body preoccupation over time
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» Then, to connect the points, double-click on the graph, and click the Add interpolation
line tool in the Chart Editor.

» Close the Chart Editor.
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Body preoccupation is a variable that represents the core symptoms, which are shared
by the four different groups. Apart from the atypical eating disorder patients, the
anorectic group and the two bulimic groups have very similar levels both at the
beginning and at the end.

Recommended Readings

See the following texts for more information on categorical principal components
analysis:

De Haas, M., J. A. Algera, H. F. J. M. Van Tuijl, and J. J. Meulman. 2000. Macro and
micro goal setting: In search of coherence. Applied Psychology, 49, 579-595.

De Leeuw, J. 1982. Nonlinear principal components analysis. In: COMPSTAT
Proceedings in Computational Statistics, Vienna: PhysicaVerlag, 77-89.

Eckart, C., and G. Young. 1936. The approximation of one matrix by another one of
lower rank. Psychometrika, 1,211-218.
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Theory, University of Leiden.
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Nonlinear Canonical Correlation
Analysis

The purpose of nonlinear canonical correlation analysis is to determine how similar
two or more sets of variables are to one another. As in linear canonical correlation
analysis, the aim is to account for as much of the variance in the relationships among
the sets as possible in a low-dimensional space. Unlike linear canonical correlation
analysis, however, nonlinear canonical correlation analysis does not assume an interval
level of measurement or assume that the relationships are linear. Another important
difference is that nonlinear canonical correlation analysis establishes the similarity
between the sets by simultaneously comparing linear combinations of the variables in
each set to an unknown set—the object scores.

Example: An Analysis of Survey Results

The example in this chapter is from a survey (Verdegaal, 1985). The responses of 15
subjects to 8 variables were recorded. The variables, variable labels, and value labels
(categories) in the data set are shown in the following table.

Table 11-1
Survey data

Variable name Variable label Value label

age Age in years 20-25, 26-30, 31-35, 3640,
41-45, 46-50, 51-55, 56-60,
61-65, 66-70

marital Marital status Single, Married, Other

pet Pets owned No, Cat(s), Dog(s), Other than cat
or dog, Various domestic animals

news Newspaper read most None, Telegraaf, Volkskrant,

often NRC, Other
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Variable name
music
live

math

language

Variable label
Music preferred

Neighborhood
preference

Math test score

Language test score

Value label

Classical, New wave, Popular,
Variety, Don’t like music

Town, Village, Countryside

0-5, 6-10, 11-15
0-5, 6-10, 11-15, 16-20

This data set can be found in verd1985.sav, which is located in the
\tutorial\sample_files\ subdirectory of the directory in which you installed SPSS. The
variables of interest are the first six variables, and they are divided into three sets. Set 1
includes age and marital, set 2 includes pet and news, and set 3 includes music and
live. Pet is scaled as multiple nominal, and age is scaled as ordinal; all other variables
are scaled as single nominal. This analysis requests a random initial configuration. By
default, the initial configuration is numerical. However, when some of the variables are
treated as single nominal with no possibility of ordering, it is best to choose a random
initial configuration. This is the case with most of the variables in this study.

Examining the Data

» To obtain a nonlinear canonical correlation analysis for this data set, from the menus

choose:
Analyze

Data Reduction
Optimal Scaling...
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Figure 11-1
Optimal Scaling dialog box

optimal Scaling
~ Optimal Scaling Level [ Dafrm

™ Al variables muttiple nominal
" Some varable(s) not multiple nominal

r— Number of Sets of Varables

— Selected Analysiz

ultiple Corespondence Analysis

Cateqarical Principal Companents

MNenlinear Canonical Comelation

» Select Some variable(s) not multiple nominal in the Optimal Scaling Level group.
» Select Multiple sets in the Number of Sets of Variables group.

» Click Define.

Figure 11-2
Nonlinear Canonical Correlation Analysis dialog box
Il Nonlinear Canonical Comelation Analysis (DVERALS) [ x|
~Set 1of 1
Pets owned [pet [k
@ s owned fpet] BresiEE | Next —l
& Newspaper read most o = P
@ Music prefemed [music] : . Lﬂel
@ Meighborhood preferent Reset |

& Math test score [math]
@ Language test score [la

Define Range and Scale... |

Label Object Scores Plot(s) by:

|
[efine Hange... |

Dimensions in Solution: IZ_ Options... |

» Select Age in years and Marital status as variables for the first set.
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» Select age and click Define Range and Scale.

Figure 11-3
Define Range and Scale dialog box

OVERALS: Define Range and Scale
Minimum: 1 Mendmum: I'II}

Measurement Scale
% Ordinal ™ Multiple nominal
" Single nominal " Discrete numenic

Corrtinuel Cancel | Help |

» Type 10 as the maximum value for this variable.

» Click Continue.

» In the Nonlinear Canonical Correlation Analysis dialog box, select marital and click
Define Range and Scale.

Figure 11-4
Define Range and Scale dialog box

OVERALS: Define Range and Scale
Minimum: 1 Mendmum: IB

Measurement Scale
" Ordinal " Multiple nominal
& Single nominal " Discrete numenic

Corrtinuel Cancel | Help |

Type 3 as the maximum value for this variable.
Select Single nominal as the measurement scale.

Click Continue.

vV v v VY

In the Nonlinear Canonical Correlation Analysis dialog box, click Next to define the
next variable set.
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Figure 11-5
Nonlinear Canonical Correlation Analysis dialog box

Il Nonlinear Canonical Comelation Analysis (OVERALS)

usic prefemed [music

@ Music prefemed fmusic] e
&> Neighborhood preferend
@ Math test score [math]

< Language test score [la

Easte

n

HUAR.

Help

Define Range and Scale... |

Label Objact Scores Plot(s) by:

|
[Efitie Farge... |

Dimensions in Solution: |2_ Optians... |

» Select Pets owned and Newspaper read most often as variables for the second set.

» Select pet and click Define Range and Scale.

Figure 11-6
Define Range and Scale dialog box

OVERALS: Define Range and Scale
Minimum: 1 Mendmum: |5

Measurement Scale
" Ordinal & Multiple nominal
" Single nominal " Discrete numenic

Corrtinuel Cancel | Help |

» Type 5 as the maximum value for this variable.
» Select Multiple nominal as the measurement scale.
» Click Continue.

» In the Nonlinear Canonical Correlation Analysis dialog box, select news and click
Define Range and Scale.
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Figure 11-7
Define Range and Scale dialog box

OVERALS: Define Range and Scale
Minimum: 1 Mendmum: |5

Measurement Scale
" Ordinal ™ Multiple nominal
% Single nominal " Discrete numenic

Corrtinuel Cancel | Help |

» Type 5 as the maximum value for this variable.
» Select Single nominal as the measurement scale.
» Click Continue.

» In the Nonlinear Canonical Correlation Analysis dialog box, click Next to define the
last variable set.

Figure 11-8
Nonlinear Canonical Correlation Analysis dialog box
Il Nonlinear Canonical Comelation Analysis (DVERALS) 1]
~Set 3of 3
Math test ath [k
@ est score [math] Preyious — _l
4 Languags test score [la 4I = o
ARt |
Variables: —
Ordinal) Reset
live(1 ? Ordinal} _l
<] -
Help
Define Range and Scale... |
Label Object Scores Plot(s) by:

|
[efine Hange... |

Dimensions in Solution: IZ_ Optians... |

» Select Music preferred and Neighborhood preference as variables for the third set.

» Select music and click Define Range and Scale.
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Figure 11-9
Define Range and Scale dialog box

OVERALS: Define Range and Scale
Minimum: 1 Mendmum: |5

Measurement Scale
" Ordinal ™ Multiple nominal
% Single nominal " Discrete numeric

Corrtinuel Cancel | Help |

Type 5 as the maximum value for this variable.

Select Single nominal as the measurement scale.

Click Continue.

In the Nonlinear Canonical Correlation Analysis dialog box, select live and click

Define Range and Scale.

Figure 11-10
Define Range and Scale dialog box

OVERALS: Define Range and Scale
Mirirmum: 1 Mazimum: IB

Measurement Scale
" Ordinal " Multiple nominal
= Single nominal " Discrete numeric

Corrtinuel Cancel | Help |

Type 3 as the maximum value for this variable.
Select Single nominal as the measurement scale.
Click Continue.

In the Nonlinear Canonical Correlation Analysis dialog box, click Options.
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Figure 11-11
Options dialog box

OVERALS: Options

¥ Frequencies ¥ Single and muttiple fit
[ Centroids ¥ Category guantifications Cancel |
[ teration history [~ Ohject scores Help
[ Weights and component loadings
r— Plot
[ Category coordinates v Category centroids
¥ Object scores ¥ Transformations

[+ Component loadings

[ Save object scores v Use random initial corfiguration:
r—Criteria
Maimum iterations: |1 Do

Convergence: I.DDDD‘I 'I

Deselect Centroids and select Weights and component loadings in the Display group.
Select Category centroids and Transformations in the Plot group.

Select Use random initial configuration.

Click Continue.

In the Nonlinear Canonical Correlation Analysis dialog box, click OK.

After a list of the variables with their levels of optimal scaling, categorical canonical
correlation analysis with optimal scaling produces a table showing the frequencies of
objects in categories. This table is especially important if there are missing data, since
almost-empty categories are more likely to dominate the solution. In this example,
there are no missing data.

A second preliminary check is to examine the plot of object scores for outliers.
Outliers have such different quantifications from the other objects that they will be at
the boundaries of the plot, thus dominating one or more dimensions.

If you find outliers, you can handle them in one of two ways. You can simply
eliminate them from the data and run the nonlinear canonical correlation analysis
again. Alternatively, you can try recoding the extreme responses of the outlying objects
by collapsing (merging) some categories.
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As shown in the plot of object scores, there were no outliers for the survey data.

Figure 11-12
Object scores
1 —
O
[}
S o
W
| =
[ 1]
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o
.
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2 -1 0 1 2

Dimension 1

Cases weighted by number of objects.

Accounting for Similarity between Sets

There are several ways to measure the association between sets in a nonlinear canonical
correlation analysis (each way being detailed in a separate table or set of tables).

Summary of Analysis

The fit and loss values tell you how well the nonlinear canonical correlation analysis
solution fits the optimally quantified data with respect to the association between the

sets. The summary of analysis table shows the fit value, loss values, and eigenvalues
for the survey example.
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Figure 11-13
Summary of analysis
Dimension
1 2 Sum
Loss et 240 183 423
Set2 184 408 593
Set3 A7 205 376
Mean 1949 285 464
Eigenvalue 801 735
Fit 1536

Loss is partitioned across dimensions and sets. For each dimension and set, loss
represents the proportion of variation in the object scores that cannot be accounted for
by the weighted combination of variables in the set. The average loss is labeled Mean.
In this example, the average loss over sets is 0.464. Notice that more loss occurs for
the second dimension than for the first dimension.

The eigenvalue for each dimension equals 1 minus the average loss for the
dimension and indicates how much of the relationship is shown by each dimension.
The eigenvalues add up to the total fit. For Verdegaal’s data, 0.801 / 1.536 = 52% of
the actual fit is accounted for by the first dimension.

The maximum fit value equals the number of dimensions and, if obtained, indicates
that the relationship is perfect. The average loss value over sets and dimensions tells
you the difference between the maximum fit and the actual fit. Fit plus the average
loss equals the number of dimensions. Perfect similarity rarely happens and usually
capitalizes on trivial aspects in the data.

Another popular statistic with two sets of variables is the canonical correlation.
Since the canonical correlation is related to the eigenvalue and thus provides no
additional information, it is not included in the nonlinear canonical correlation analysis
output. For two sets of variables, the canonical correlation per dimension is obtained
by the following formula:

Pd = 2 X Ed -1
where d is the dimension number and E is the eigenvalue.

You can generalize the canonical correlation for more than two sets with the following
formula:

pa = ((K x Eg) = 1)/(K - 1)
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where d is the dimension number, K is the number of sets, and E is the eigenvalue.
For our example,

pr=((3x0.801) —1)/2 = 0.702

and

p2 = ((3 x 0.735) — 1)/2 = 0.603

Weights and Component Loadings

Another measure of association is the multiple correlation between linear combinations
from each set and the object scores. If no variables in a set are multiple nominal, you
can compute this measure by multiplying the weight and component loading of each
variable within the set, adding these products, and taking the square root of the sum.

Figure 11-14
Weights
Dimension
et 1 2
1 Age in years 620 789
Marital status 296 -1.016
2 Mewspaper read most
often -.845 -.361
3 Music preferred B3 -749
Meighborhood preference -.4584 -780
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Figure 11-15
Component loadings
Dimension
Set 1 2
1 Age in yearsa.b 834 259
Marital statuse® 651 -604
2 Pets ownedd.= Dimension 1 387 -43
2 - 277 .G80
cb
MNewspaper read most often 887 _ag1
3 Music preferredsb 786 -500
i cb
Meighborhood preference 687 540

- Optimal Scaling Level: Ordinal

. Projections of the Single Quantified Variables in the Object Space
. Optimal Scaling Level: Single Mominal

. Optimal Scaling Level: Multiple Mominal

o oo O O W

. Projections of the Multiple Quuantified Variables in the Object Space

These figures give the weights and component loadings for the variables in this
example. The multiple correlation (R) is as follows for the first weighted sum of
optimally scaled variables (Age in years and Marital status) with the first dimension of
object scores:

= \/(0.701 x 0.841 + (—0.273 x —0.631))

= 1/(0.5895 + 0.1723)
= 0.873

For each dimension, 1 —loss = R2. For example, from the Summary of analysis table, 1
—0.238 = 0.762, which is 0.873 squared (plus some rounding error). Consequently,
small loss values indicate large multiple correlations between weighted sums of
optimally scaled variables and dimensions. Weights are not unique for multiple
nominal variables. For multiple nominal variables, use 1 — loss per set.
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Partitioning Fit and Loss

The loss of each set is partitioned by the nonlinear canonical correlation analysis in
several ways. The fit table presents the multiple fit, single fit, and single loss tables
produced by the nonlinear canonical correlation analysis for the survey example. Note
that multiple fit minus single fit equals single loss.

Figure 11-16
Partitioning fit and loss
Multiple Fit Single Fit Single Loss
Dimension Dimension Dimension
Set 1 2 Sum 1 2 Sum 1 2 Sum
1 Age in yearse 494 | BV6 1170 | 462 | 622 | 1.085 | .032 | .054 | .085
Marital status® 089 [1.033 (1122 | 088 | 1.03 | 1120 | .001 | .000 | .00
2 Fets owned= 402 439 841
En?:fgsgﬁé read T24 187 a1 T14 | 130 844 010 057 {067

3 Music preferred® 421 57T 998 | 398 | 561 960 | 022 | 016 | .039
Neighborhgod

preference 234 | 609 | .B43 | 234 | GOS8 .843 | .000 | .000 | .000

3. Optimal Scaling Level: Ordinal
b. Optimal Scaling Level: Single Mominal
C. Optimal Scaling Level: Multiple Mominal

Single loss indicates the loss resulting from restricting variables to one set of
quantifications (that is, single nominal, ordinal, or nominal). If single loss is large, it is
better to treat the variables as multiple nominal. In this example, however, single fit
and multiple fit are almost equal, which means that the multiple coordinates are almost
on a straight line in the direction given by the weights.

Multiple fit equals the variance of the multiple category coordinates for each
variable. These measures are analogous to the discrimination measures that are found
in homogeneity analysis. You can examine the multiple fit table to see which variables
discriminate best. For example, look at the multiple fit table for Marital status and
Newspaper read most often. The fit values, summed across the two dimensions, are
1.122 for Marital status and 0.911 for Newspaper read most often. This information
tells us that a person’s marital status provides greater discriminatory power than the
newspaper they subscribe to.

Single fit corresponds to the squared weight for each variable and equals the
variance of the single category coordinates. As a result, the weights equal the standard
deviations of the single category coordinates. By examining how the single fit is
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broken down across dimensions, we see that the variable Newspaper read most often
discriminates mainly on the first dimension, and we see that the variable Marital status
discriminates almost totally on the second dimension. In other words, the categories
of Newspaper read most often are further apart in the first dimension than in the
second, whereas the pattern is reversed for Marital status. In contrast, Age in years
discriminates in both the first and second dimensions; thus, the spread of the categories
is equal along both dimensions.

Component Loadings

The following figure shows the plot of component loadings for the survey data. When
there are no missing data, the component loadings are equivalent to the Pearson
correlations between the quantified variables and the object scores.

The distance from the origin to each variable point approximates the importance
of that variable. The canonical variables are not plotted but can be represented by
horizontal and vertical lines drawn through the origin.

Figure 11-17
Component loadings
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The relationships between variables are apparent. There are two directions that do not
coincide with the horizontal and vertical axes. One direction is determined by Age in
years, Newspaper read most often, and Neighborhood preference. The other direction
is defined by the variables Marital status, Music preferred, and Pets owned. The Pets
owned variable is a multiple nominal variable, so there are two points plotted for it.
Each quantification is interpreted as a single variable.

Transformation Plots

The different levels at which each variable can be scaled impose restrictions on

the quantifications. Transformation plots illustrate the relationship between the
quantifications and the original categories resulting from the selected optimal scaling
level.

The transformation plot for Neighborhood preference, which was treated as
nominal, displays a U-shaped pattern, in which the middle category receives the lowest
quantification, and the extreme categories receive values that are similar to each other.
This pattern indicates a quadratic relationship between the original variable and the
transformed variable. Using an alternative optimal scaling level is not suggested for
Neighborhood preference.
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Figure 11-18
Transformation plot for Neighborhood preference (nominal)
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The quantifications for Newspaper read most often, in contrast, correspond to an
increasing trend across the three categories that have observed cases. The first category
receives the lowest quantification, the second category receives a higher value, and the
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third category receives the highest value. Although the variable is scaled as nominal,
the category order is retrieved in the quantifications.

Figure 11-19
Transformation plot for Newspaper read most often (nominal)
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Figure 11-20
Transformation plot for Age in years (ordinal)
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The transformation plot for Age in years displays an S-shaped curve. The four
youngest observed categories all receive the same negative quantification, whereas the
two oldest categories receive similar positive values. Consequently, collapsing all
younger ages into one common category (that is, below 50) and collapsing the two
oldest categories into one category may be attempted. However, the exact equality of
the quantifications for the younger groups indicates that restricting the order of the
quantifications to the order of the original categories may not be desirable. Because
the quantifications for the 26-30, 36—40, and 4145 groups cannot be lower than the
quantification for the 20-25 group, these values are set equal to the boundary value.
Allowing these values to be smaller than the quantification for the youngest group (that
is, treating age as nominal) may improve the fit. So although age may be considered an
ordinal variable, treating it as such does not appear appropriate in this case. Moreover,
treating age as numerical, and thus maintaining the distances between the categories,
would substantially reduce the fit.



241

Nonlinear Canonical Correlation Analysis
Single Category versus Multiple Category Coordinates
For every variable treated as single nominal, ordinal, or numerical, quantifications,

single category coordinates, and multiple category coordinates are determined. These
statistics for Age in years are presented.

Figure 11-21
Coordinates for Age in years
Multiple
Single Category Category
Coordinates Coordinates
Marginal Dimension Dimension
Frequency | Quantification 1 2 1 2
20-25 3 -554 =377 -437 -192 -139
26-30 5 - 554 =377 -437 -404 -.623
31-35 0 .000
36-40 1 -554 =377 -437 -318 -733
41-45 1 -.554 =377 -437 -.356 -534
46-50 0 .000
51-55 0 000
56-60 2 -209 -142 -165 -435 087
61-65 1 1.947 1.324 1.536 1.710 1.204
B6-70 2 2.006 1.364 1.583 1.215 1.711
Missing 0

Every category for which no cases were recorded receives a quantification of 0. For Age
in years, this includes the 31-35, 4650, and 51-55 categories. These categories are not
restricted to be ordered with the other categories and do not affect any computations.

For multiple nominal variables, each category receives a different quantification
on each dimension. For all other transformation types, a category has only one
quantification, regardless of the dimensionality of the solution. Each set of single
category coordinates represents the location of the category on a line in the object
space. The coordinates for a given category equal the quantification multiplied by the
variable dimension weights. For example, in the table for Age in years, the single
category coordinates for category 56-60 (-0.142, -0.165) are the quantification (-0.209)
multiplied by the dimension weights (0.680, 0.789).

The multiple category coordinates for variables that are treated as single nominal,
ordinal, or numerical represent the coordinates of the categories in the object space
before ordinal or linear constraints are applied. These values are unconstrained
minimizers of the loss. For multiple nominal variables, these coordinates represent the
quantifications of the categories.
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The effects of imposing constraints on the relationship between the categories and
their quantifications are revealed by comparing the single category coordinates with
the multiple category coordinates. On the first dimension, the multiple category
coordinates for Age in years decrease to category 2 and remain relatively at the same
level until category 9, at which point a dramatic increase occurs. A similar pattern is
evidenced for the second dimension. These relationships are removed in the single
category coordinates, in which the ordinal constraint is applied. On both dimensions,
the coordinates are now nondecreasing. The differing structure of the two sets of
coordinates suggests that a nominal treatment may be more appropriate.

Centroids and Projected Centroids

The plot of centroids labeled by variables should be interpreted in the same way as
the category quantifications plot in homogeneity analysis or the multiple category
coordinates in nonlinear principal components analysis. By itself, such a plot shows
how well variables separate groups of objects (the centroids are in the center of gravity
of the objects).

Notice that the categories for Age in years are not separated very clearly. The
younger age categories are grouped together at the left of the plot. As suggested
previously, ordinal may be too strict a scaling level to impose on Age in years.
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Centroids labeled by variables

Nonlinear Canonical Correlation Analysis
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When you request centroid plots, individual centroid and projected centroid plots for

each variable that is labeled by value labels are also produced. The projected centroids
are on a line in the object space.

Figure 11-23
Centroids and projected centroids for Newspaper read most often
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The actual centroids are projected onto the vectors that are defined by the component
loadings. These vectors have been added to the centroid plots to aid in distinguishing
the projected centroids from the actual centroids. The projected centroids fall into one
of four quadrants formed by extending two perpendicular reference lines through the
origin. The interpretation of the direction of single nominal, ordinal, or numerical
variables is obtained from the position of the projected centroids. For example, the
variable Newspaper read most often is specified as single nominal. The projected
centroids show that Volkskrant and NRC are contrasted with Telegraaf.
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Figure 11-24
Centroids and projected centroids for Age in years
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The problem with Age in years is evident from the projected centroids. Treating Age in
years as ordinal implies that the order of the age groups must be preserved. To satisfy
this restriction, all age groups below age 45 are projected into the same point. Along
the direction defined by Age in years, Newspaper read most often, and Neighborhood

preference, there is no separation of the younger age groups. Such a finding suggests
treating the variable as nominal.
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Figure 11-25
Centroids and projected centroids for Neighborhood preference
15
Centroids
) Actual
() Projected
o
10 village
g
Village
(]
c 05—
2
c
[ O Town
E
g 0o
© Topn
05— @ Country
Couptry
-1.0 T O T T
-10 05 oo 05 1.0 1.5
Dimension 1

To understand the relationships among variables, find out what the specific categories
(values) are for clusters of categories in the centroid plots. The relationships among
Age in years, Newspaper read most often, and Neighborhood preference can be
described by looking at the upper right and lower left of the plots. In the upper right,
the age groups are the older respondents; they read the newspaper Telegraaf and prefer
living in a village. Looking at the lower left corner of each plot, you see that the
younger to middle-aged respondents read the Volkskrant or NRC and want to live in
the country or in a town. However, separating the younger groups is very difficult.
The same types of interpretations can be made about the other direction (Music
preferred, Marital status, and Pets owned) by focusing on the upper left and the
lower right of the centroid plots. In the upper left corner, we find that single people
tend to have dogs and like new wave music. The married people and other categories

for marital have cats; the former group prefers classical music, and the latter group
does not like music.



247

Nonlinear Canonical Correlation Analysis

An Alternative Analysis

The results of the analysis suggest that treating Age in years as ordinal does not appear
appropriate. Although Age in years is measured at an ordinal level, its relationships
with other variables are not monotonic. To investigate the effects of changing the
optimal scaling level to single nominal, you may rerun the analysis.

To Run the Analysis

vV v v Vv VY

Recall the Nonlinear Canonical Correlation Analysis dialog box.

Select age and click Define Range and Scale.

In the Define Range and Scale dialog box, select Single nominal as the scaling range.
Click Continue.

In the Nonlinear Canonical Correlation Analysis dialog box, click OK.

The eigenvalues for a two-dimensional solution are 0.806 and 0.757, respectively,
with a total fit of 1.564.

Figure 11-26
Eigenvalues for the two-dimensional solution

Dimension
1 2 Sum

Loss Set1 249 115 363

Set2 76 408 584

Set 3 57 205 363

Mean 194 243 436
Eigenvalue 806 757
Fit 1.564
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The multiple fit and single fit tables show that Age in years is still a highly
discriminating variable, as evidenced by the sum of the multiple fit values. In
contrast to the earlier results, however, examination of the single fit values reveals the
discrimination to be almost entirely along the second dimension.

Figure 11-27
Partitioning fit and loss
Multiple Fit Single Fit Single Loss
Dimension Dimension Dimension

Set 1 2 Sum 1 2 Sum 1 2 Sum
1 Age in yearse 246 |1.197 |1.443 | 195 | 1188 | 1.384 | 051 | .008 | .059

Marital status= 273 |1.136 |1.409 272 11135 (1.407 | 001 000 0oz
2 Pets owned® 530 | 392 | 921

Mewspaper
read most often
3 Music preferred= | G604 | 438 [1.041 603 | 437 (1.040 | .000 | .001 | .001

Neighborhgod
preference

B39 | 185 | 824 | 631 149 780 | .008 | .036 | .044

075 | 822 | 897 | 075 | 822 | .B97 | .000 | .000 | 00O

4. Optimal Scaling Level: Single Mominal
b. Optimal Scaling Level: Multiple Mominal

Turn to the transformation plot for Age in years. The quantifications for a nominal

variable are unrestricted, so the nondecreasing trend that was displayed when Age in
years was treated ordinally is no longer present. There is a decreasing trend until the
age of 40 and an increasing trend thereafter, corresponding to a U-shaped (quadratic)
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relationship. The two older categories still receive similar scores, and subsequent
analyses may involve combining these categories.

Figure 11-28
Transformation plot for Age in years (nominal)
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The transformation plot for Neighborhood preference is shown here. Treating Age in
years as nominal does not affect the quantifications for Neighborhood preference to
any significant degree. The middle category receives the smallest quantification, with
the extreme categories receiving large positive values.

Figure 11-29
Transformation plot for Neighborhood preference (age nominal)
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A change is found in the transformation plot for Newspaper read most often.
Previously, an increasing trend was present in the quantifications, possibly suggesting
an ordinal treatment for this variable. However, treating Age in years as nominal
removes this trend from the news quantifications.

Figure 11-30
Transformation plot for Newspaper read most often (age nominal)
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This plot is the centroid plot for Age in years. Notice that the categories do not fall in
chronological order along the line joining the projected centroids. The 20-25 group
is situated in the middle rather than at the end. The spread of the categories is much
improved over the ordinal counterpart that was presented previously.

Figure 11-31

Centroids and projected centroids for Age in years (nominal)
1.0

O B6-70 )
66-70 Centroids
61-65 O Actual
o 20- () Projected
0s | 20-25 :
o
61-65
) 39825 0 56-60

00 0 36-40 la. ..
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c 26(-}30 0 41-45
2 A0
c 054 O 56-60
@
E
(=)

10 o

1.5+ 0 41-45

-20 T T | T

A0 05 0.0 0.5 1.0 15 2.0
Dimension 1

Interpretation of the younger age groups is now possible from the centroid plot. The
Volkskrant and NRC categories are also further apart than in the previous analysis,
allowing for separate interpretations of each. The groups between the ages of 26 and
45 read the Volkskrant and prefer country living. The 20-25 and 56-60 age groups
read the NRC; the former group prefers to live in a town, and the latter group prefers
country living. The oldest groups read the Telegraaf and prefer village living.
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Interpretation of the other direction (Music preferred, Marital status, and Pets owned)
is basically unchanged from the previous analysis. The only obvious difference is that
people with a marital status of Other have either cats or no pets.

Figure 11-32

Centroids labeled by variables (age nominal)
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After you have examined the initial results, you will probably want to refine your
analysis by changing some of the specifications for the nonlinear canonical correlation

analysis. Here are some tips for structuring your analysis:

in a separate set by itself.

predictors, try to partition them into several sets.

Create as many sets as possible. Put an important variable that you want to predict

Put variables that you consider predictors together in a single set. If there are many
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®  Put each multiple nominal variable in a separate set by itself.

m  [f variables are highly correlated to each other, and you don’t want this relationship
to dominate the solution, put those variables together in the same set.

Recommended Readings

See the following texts for more information about nonlinear canonical correlation
analysis:

Carroll, J. D. 1968. Generalization of canonical correlation analysis to three or more
sets of variables. In: Proceedings of the 76th Annual Convention of the American
Psychological Association, 3, Washington,D.C.: American Psychological Association,
227-228.

De Leeuw, J. 1984. Canonical analysis of categorical data, 2nd ed. Leiden: DSWO
Press.

Horst, P. 1961. Generalized canonical correlations and their applications to
experimental data. Journal of Clinical Psychology, 17, 331-347.

Horst, P. 1961. Relations among m sets of measures. Psychometrika, 26, 129—149.

Kettenring, J. R. 1971. Canonical analysis of several sets of variables. Biometrika,
58, 433-460.

Van der Burg, E. 1988. Nonlinear canonical correlation and some related techniques.
Leiden: DSWO Press.

Van der Burg, E., and J. De Leeuw. 1983. Nonlinear canonical correlation. British
Journal of Mathematical and Statistical Psychology, 36, 54-80.

Van der Burg, E., J. De Leeuw, and R. Verdegaal. 1988. Homogeneity analysis with k
sets of variables: An alternating least squares method with optimal scaling features.
Psychometrika, 53, 177-197.

Verboon, P, and I. A. Van der Lans. 1994. Robust canonical discriminant analysis.
Psychometrika, 59, 485-507.
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Correspondence Analysis

A correspondence table is any two-way table whose cells contain some measurement
of correspondence between the rows and the columns. The measure of correspondence
can be any indication of the similarity, affinity, confusion, association, or interaction
between the row and column variables. A very common type of correspondence table
is a crosstabulation, where the cells contain frequency counts.

Such tables can be obtained easily with the Crosstabs procedure. However, a
crosstabulation does not always provide a clear picture of the nature of the relationship
between the two variables. This is particularly true if the variables of interest
are nominal (with no inherent order or rank) and contain numerous categories.
Crosstabulation may tell you that the observed cell frequencies differ significantly
from the expected values in a 1029 crosstabulation of occupation and breakfast cereal,
but it may be difficult to discern which occupational groups have similar tastes or
what those tastes are.

Correspondence Analysis allows you to examine the relationship between two
nominal variables graphically in a multidimensional space. It computes row and
column scores and produces plots based on the scores. Categories that are similar
to each other appear close to each other in the plots. In this way, it is easy to see
which categories of a variable are similar to each other or which categories of the two
variables are related. The Correspondence Analysis procedure also allows you to fit
supplementary points into the space defined by the active points.

If the ordering of the categories according to their scores is undesirable or
counterintuitive, order restrictions can be imposed by constraining the scores for
some categories to be equal. For example, suppose that you expect the variable
smoking behavior, with categories none, light, medium, and heavy, to have scores
that correspond to this ordering. However, if the analysis orders the categories none,
light, heavy, and medium, constraining the scores for heavy and medium to be equal
preserves the ordering of the categories in their scores.

255
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The interpretation of correspondence analysis in terms of distances depends on the
normalization method used. The Correspondence Analysis procedure can be used
to analyze either the differences between categories of a variable or the differences
between variables. With the default normalization, it analyzes the differences between
the row and column variables.

The correspondence analysis algorithm is capable of many kinds of analyses.
Centering the rows and columns and using chi-square distances corresponds to
standard correspondence analysis. However, using alternative centering options
combined with Euclidean distances allows for an alternative representation of a matrix
in a low-dimensional space.

Three examples will be presented. The first employs a relatively small
correspondence table and illustrates the concepts inherent in correspondence analysis.
The second example demonstrates a practical marketing application. The final example
uses a table of distances in a multidimensional scaling approach.

Normalization

Normalization is used to distribute the inertia over the row scores and column
scores. Some aspects of the correspondence analysis solution, such as the singular
values, the inertia per dimension, and the contributions, do not change under the
various normalizations. The row and column scores and their variances are affected.
Correspondence analysis has several ways to spread the inertia. The three most
common include spreading the inertia over the row scores only, spreading the inertia
over the column scores only, or spreading the inertia symmetrically over both the row
scores and the column scores.

Row principal. In row principal normalization, the Euclidean distances between the row
points approximate chi-square distances between the rows of the correspondence table.
The row scores are the weighted average of the column scores. The column scores
are standardized to have a weighted sum of squared distances to the centroid of 1.
Since this method maximizes the distances between row categories, you should use
row principal normalization if you are primarily interested in seeing how categories of
the row variable differ from each other.

Column principal. On the other hand, you might want to approximate the chi-square
distances between the columns of the correspondence table. In that case, the column
scores should be the weighted average of the row scores. The row scores are
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standardized to have a weighted sum of squared distances to the centroid of 1. This
method maximizes the distances between column categories and should be used if
you are primarily concerned with how categories of the column variable differ from
each other.

Symmetrical. You can also treat the rows and columns symmetrically. This
normalization spreads inertia equally over the row and column scores. Note that
neither the distances between the row points nor the distances between the column
points are approximations of chi-square distances in this case. Use this method if you
are primarily interested in the differences or similarities between the two variables.
Usually, this is the preferred method to make biplots.

Principal. A fourth option is called principal normalization, in which the inertia is
spread twice in the solution—once over the row scores and once over the column
scores. You should use this method if you are interested in the distances between the
row points and the distances between the column points separately but not in how the
row and column points are related to each other. Biplots are not appropriate for this
normalization option and are therefore not available if you have specified the principal
normalization method.

Example: Smoking Behavior by Job Category

The aim of correspondence analysis is to show the relationships between the rows
and columns of a correspondence table. You will use a hypothetical table introduced
by Greenacre (Greenacre, 1984) to illustrate the basic concepts. This information is
collected in smoking.sav, located in the \tutorial\sample_files\ subdirectory of the
directory in which you installed SPSS.

The table of interest is formed by the crosstabulation of smoking behavior by
job category. The variable Staff Group contains the job categories Sr Managers, Jr
Managers, Sr Employees, Jr Employees, and Secretaries, which will be used to create
the solution, plus the category National Average, which can be used as supplementary
to the analysis. The variable Smoking contains the behaviors None, Light, Medium, and
Heavy, which will be used to create the solution, plus the categories No Alcohol and
Alcohol, which can be used as supplementary to the analysis.
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Running the Analysis

» Before you can run the Correspondence Analysis procedure, the setup of the data
requires that the cases be weighted by the variable count. To do this, from the menus
choose:

Data
Weight Cases...

Figure 12-1
Weight Cases dialog box

@ Staff Group [staff]
@ Smoking [smoke]

" Do not weight cases oK I
& Weight cases by Paste |
Frequency Variable:

= Reset
E I’ count

Current Status: Weight cases by count Help

» Weight cases by count.

» Click OK.

» Then, to obtain a correspondence analysis in two dimensions using row principal
normalization, from the menus choose:
Analyze

Data Reduction
Correspondence Analysis...
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Figure 12-2
Correspondence Analysis dialog box

Il Comespondence Analysis
Row:

#» Smoking [smokz]

[w

it
@count E
Define Range... | ﬁl
Reset |
Column:
[ Cancel |
[efine Hange... | Help |
Model.. | Swtiscs. | Pits.. |
Select Staff Group as the row variable.
Click Define Range.
Figure 12-3
Define Row Range dialog box

—Category range for row varable: staff

Minimum value:

Maximum walue:

—Category Constraints

& None
(™ Categories must be equal

€N Lo B

" Category is supplemental

Continue |

Cancel |

Help

Type 1 as the minimum value.
Type 5 as the maximum value.
Click Update.

Click Continue.

Correspondence Analysis
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>
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Select Smoking as the column variable.

Click Define Range in the Correspondence Analysis dialog box.

Figure 12-4
Define Column Range dialog box
Comespondence Analysis: Define Column Range B
—Category range for column variable: smoke ——————— Tz |
Minimum value: I'I Cancel |
Update
Mapdimum value: |4 Help
r—Category Constraints
% " None
4 (" Categories must be equal
™ Category is supplemental

Type 1 as the minimum value.
Type 4 as the maximum value.
Click Update.

Click Continue.

Click Statistics in the Correspondence Analysis dialog box.

Figure 12-5
Statistics dialog box

[v Comespondence table

[+ Overview of row points ¥ Raow profiles Cancel |

[ Overview of column points W Column profiles

Hel
¥ Pemutations of the comespondence table £

Maimum dimension for permutations: |1_

Confidence Statistics for
¥ Row points ¥ Column poirts

Select Row profiles and Column profiles.
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Click Continue.

Correspondence Table

Select Permutations of the correspondence table.

Select confidence statistics for Row points and Column points.

Click OK in the Correspondence Analysis dialog box.

Correspondence Analysis

The correspondence table shows the distribution of smoking behavior for five levels of
job category. The rows of the correspondence table represent the job categories. The
columns represent the smoking behavior.

Figure 12-6
Correspondence table
Smoking

Staff Group Mone Light Medium Heawy Active Margin
SrManagers 4 2 3 2 11
JrManagers 4 3 7 4 18
SrEmployees 25 10 12 4 51
JrEmployees 18 24 33 13 88
Secretaries 10 B 7 2 25
Active Margin 51 45 52 25 193

The marginal row totals show that the company has far more employees, both junior
and senior, than managers and secretaries. However, the distribution of senior and
junior positions for the managers is approximately the same as the distribution of
senior and junior positions for the employees. Looking at the column totals, you see
that there are similar numbers of nonsmokers and medium smokers. Furthermore,
heavy smokers are outnumbered by each of the other three categories. But what, if
anything, do any of these job categories have in common regarding smoking behavior?
And what is the relationship between job category and smoking?
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Dimensionality

Ideally, you want a correspondence analysis solution that represents the relationship
between the row and column variables in as few dimensions as possible. But it
is frequently useful to look at the maximum number of dimensions to see the
relative contribution of each dimension. The maximum number of dimensions for a
correspondence analysis solution equals the number of active rows minus 1 or the
number of active columns minus 1, whichever is less. An active row or column is one
for which a distinct set of scores is found. Supplementary rows or columns are not
active. In the present example, the maximum number of dimensions is min(5,4) — 1 = 3.
The first dimension displays as much of the inertia (a measure of the variation in
the data) as possible, the second is orthogonal to the first and displays as much of
the remaining inertia as possible, and so on. It is possible to split the total inertia
into components attributable to each dimension. You can then evaluate the inertia
shown by a particular dimension by comparing it to the total inertia. For example, the
first dimension displays 87.8% (0.075/0.085) of the total inertia, whereas the second
dimension displays only 11.8% (0.010/0.085).

Figure 12-7
Inertia per dimension
Proporticn of Inertia Confidence Singular Valus
Singular Chi Accounted Standard Comelaticn
Dimensicn | Walus Inertia | Squars Sig. for Cumulative | Devistion 2 3
1 273 078 878 878 070 020 | -012
2 100 010 118 585 .0ve -.058
3 .020 000 .008 1.000 072
Total 0B85 | 18.442 1729 1.000 1.000

8. 12 degrees of freedom

If you decide that the first p dimensions of a ¢ dimensional solution show enough of
the total inertia, then you do not have to look at higher dimensions. In this example,
the two-dimensional solution is sufficient, since the third dimension represents less
than 1.0% of the total inertia.

The singular values can be interpreted as the correlation between the row and
column scores. They are analogous to the Pearson correlation coefficient (7) in
correlation analysis. For each dimension, the singular value squared (eigenvalue)
equals the inertia and thus is another measure of the importance of that dimension.
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Correspondence Analysis

Correspondence analysis generates a variety of plots that graphically illustrate the
underlying relationships between categories and between variables. This is the
scatterplot of the row and column scores for the two-dimensional solution.

Figure 12-8
Plot of row and column scores (symmetrical normalization)
0.8 _
Jrianagers () Smoking
() Staff G
08— O SrManagers Heawo \J) statt Group
0.4 —
[
5 02+
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@ -
g 00+ O SrEmployees o
[a} Medium
-0.2 H o)
O Secretaries  JrEmMployees
04 —
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08 I T T T T T 1

05 06 04 -02 0o 02 04 06

Dimension 1

The interpretation of the plot is fairly simple—row/column points that are close
together are more alike than points that are far apart. The second dimension separates
managers from other employees, while the first separates senior from junior, with
secretaries in between.

The symmetrical normalization makes it easy to examine the relationship between
job category and smoking. For example, managers are near the Heavy smoking
category, while senior employees are closest to None. Junior employees seem to be
associated with Medium or Light smoking, and secretaries are not strongly associated
with any particular smoking behavior (but are far from Heavy).
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Profiles and Distances

To determine the distance between categories, correspondence analysis considers the
marginal distributions as well as the individual cell frequencies. It computes row
and column profiles, which give the row and column proportions for each cell, based
on the marginal totals.

Figure 12-9
Row profiles (symmetrical normalization)
Smoking

Staff Group Mone Light Medium Heawy Active Margin
SrManagers 364 a2 273 182 1.000
JrManagers 222 BT 389 222 1.000
SrEmployees 490 196 235 078 1.000
JrEmployees 205 273 375 148 1.000
Secretaries 400 240 280 .0&0 1.000
Mass 316 233 A2 130

The row profiles indicate the proportion of the row category in each column category.
For example, among the senior employees, most are nonsmokers and very few are
heavy smokers. In contrast, among the junior managers, most are medium smokers
and very few are light smokers.

The column profiles indicate the proportion of the column in each row category.
For example, most of the light smokers are junior employees. Similarly, most of the
medium and heavy smokers are junior employees. Recall that the sample contains
predominantly junior employees. It is not surprising that this staff category dominates
the smoking categories.

Figure 12-10
Column profiles
Smoking

Staff Group Mone Light Medium Heawy Mass
SrManagers {066 044 048 080 057
JrManagers [0BE 067 113 160 093
SrEmployees 410 222 194 60 264
JrEmployees 295 533 532 520 456
Secretaries 164 133 113 {080 130
Active Margin 1.000 1.000 1.000 1.000
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Mass is a measure that indicates the influence of an object based on its marginal
frequency. Mass affects the centroid, which is the weighted mean row or column
profile. The row centroid is the mean row profile. Points with a large mass, like junior
employees, pull the centroid strongly to their location. A point with a small mass, like
senior managers, pulls the row centroid only slightly to its location.

If you prefer to think of difference in terms of distance, then the greater the
difference between row profiles, the greater the distance between points in a plot. For
example, when using row principal normalization, the final configuration is one in
which Euclidean distances between row points in the full dimensional space equal the
chi-square distances between rows of the correspondence table. In a reduced space,
the Euclidean distances approximate the chi-square distances. In turn, the chi-square
distances are weighted profile distances. These weighted distances are based on mass.

Likewise, under column principal normalization, the Euclidean distances between
column points in the full dimensional space equal the chi-square distances between
columns of the correspondence table. Note, however, that under symmetric
normalization, these quantities are not equal.

The total inertia is defined as the weighted sum of all squared distances to the
origin divided by the total over all cells, where the weights are the masses. Rows with
a small mass influence the inertia only when they are far from the centroid. Rows
with a large mass influence the total inertia, even when they are located close to the
centroid. The same applies to columns.

Row and Column Scores

The row and column scores are the coordinates of the row and column points in the
biplot.
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Figure 12-11
Row scores (symmetrical normalization)
Score in
Dirmension Contribution
Of Point to
Inertia of Of Dimension to Inertia
Dirnensicn of Point
Staff Group Mass 1 2 Inertia 1 2 1 2 Total
Sr Managers 057 -.128 812 003 003 214 Jnez 800 B2
Jr Managers 083 495 789 012 084 551 528 485 281
Sr Employess 284 -T28 034 038 512 002 o ] 001 1.000
Jr Employees 458 445 -182 026 | .23 AB2| 942 058 1.000
Secetaries L1320 -385 -.249 005 070 081 265 133 -]
Active Total 1.000 {085 | 1.000 | 1.000
Figure 12-12
Column scores (symmetrical normalization)
Score in
Dimension Coentribution
Of Point to
Inertia of Of Dimension to Inertia
Diir i of Point
Smoking Mass 1 2 Inertia 1 2 1 2 Total
MNone 318 -T52 096 043 (654 028 254 005 [ 1.000
Light 233 190 -.448 007 031 483 Aaz7 857 984
Medium 321 375 -022 012 166 .00z | @e2 .00 R-x)
Heavy 120 582 625 .018 150 506 | S84 310 e85
Active Total | 1.000 .085 | 1.000| 1.000

The column scores are related to the row scores via the profiles and singular value (from
the inertia per dimension table). Specifically, the row scores are the matrix product of
the row profiles and column scores, scaled by the singular value for each dimension.
For example, the score of —0.126 for senior managers on the first dimension equals:

(0.364 x —0.752) + (0.182 x 0.190) + (0.273 x 0.375) + (0.182 x 0.562)
0.273

For row principal normalization, the singular value does not figure into this equation.
The row points are in the weighted centroid of the active column points, where the
weights correspond to the entries in the row profiles table. When the row points are the
weighted average of the column points and the maximum dimensionality is used, the
Euclidean distance between a row point and the origin equals the chi-square distance
between the row and the average row, which in turn is equal to the inertia of a row.
Because the chi-square statistic is equivalent to the total inertia times the sum of all
cells of the correspondence table, you can think of the orientation of the row points as
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a pictorial representation of the chi-square statistic. A corresponding interpretation
exists for column principal normalization but not for symmetrical.

Contributions

It is possible to compute the inertia displayed by a particular dimension. The scores
on each dimension correspond to an orthogonal projection of the point onto that
dimension. Thus, the inertia for a dimension equals the weighted sum of the squared
distances from the scores on the dimension to the origin. However, whether this applies
to row or column scores (or both) depends on the normalization method used. Each
row and column point contributes to the inertia. Row and column points that contribute
substantially to the inertia of a dimension are important to that dimension. The
contribution of a point to the inertia of a dimension is the weighted squared distance
from the projected point to the origin divided by the inertia for the dimension.

The diagnostics that measure the contributions of points are an important aid in the
interpretation of a correspondence analysis solution. Dominant points in the solution
can easily be detected. For example, senior employees and junior employees are
dominant points in the first dimension, contributing 84% of the inertia. Among the
column points, none contributes 65% of the inertia for the first dimension alone.

The contribution of a point to the inertia of the dimensions depends on both the
mass and the distance from the origin. Points that are far from the origin and have a
large mass contribute most to the inertia of the dimension. Because supplementary
points do not play any part in defining the solution, they do not contribute to the inertia
of the dimensions.

In addition to examining the contribution of the points to the inertia per dimension,
you can examine the contribution of the dimensions to the inertia per point. You
can examine how the inertia of a point is spread over the dimensions by computing
the percentage of the point inertia contributed by each dimension. Notice that the
contributions of the dimensions to the point inertias do not all sum to one. In a reduced
space, the inertia that is contributed by the higher dimensions is not represented. Using
the maximum dimensionality would reveal the unaccounted inertia amounts.

The first two dimensions contribute all of the inertia for senior employees and junior
employees and virtually all of the inertia for junior managers and secretaries. For
senior managers, 11% of the inertia is not contributed by the first two dimensions. Two
dimensions contribute a very large proportion of the inertia of the row points.
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Similar results occur for the column points. For every active column point, two
dimensions contribute at least 98% of the inertia. The third dimension contributes
very little to these points.

Permutations of the Correspondence Table

Sometimes it is useful to order the categories of the rows and the columns. For
example, you might have reason to believe that the categories of a variable correspond
to a certain order, but you don’t know the precise order. This ordination problem is
found in various disciplines—the seriation problem in archaeology, the ordination
problem in phytosociology, and Guttman’s scalogram problem in the social sciences.
Ordering can be achieved by taking the row and column scores as ordering variables.
If you have row and column scores in p dimensions, p permuted tables can be made.
When the first singular value is large, the first table will show a particular structure,
with larger-than-expected relative frequencies close to the “diagonal.”

The following table shows the permutation of the correspondence table along the
first dimension. Looking at the row scores for dimension 1, you can see that the
ranking from lowest to highest is senior employees (-0.728), secretaries (—0.385),
senior managers (—0.126), junior employees (0.446), and junior managers (0.495).
Looking at the column scores for dimension 1, you see that the ranking is none, light,
medium, and then heavy. These rankings are reflected in the ordering of the rows
and columns of the table.

Figure 12-13
Permutation of the correspondence table
Smoking

Staff Group Mone Light Medium Heawy Active Margin
SrEmployees 25 10 12 4 51
Secretaries 10 B 7 2 25
SrManagers 4 2 3 2 Ll
JrEmployees 18 24 33 13 a8
Jr Managers 4 3 7 4 18
Active Margin 61 45 G2 25 193
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Confidence Statistics

Assuming that the table to be analyzed is a frequency table and that the data are a
random sample from an unknown population, the cell frequencies follow a multinomial
distribution. From this, it is possible to compute the standard deviations and
correlations of the singular values, row scores, and column scores.

In a one-dimensional correspondence analysis solution, you can compute a
confidence interval for each score in the population. If the standard deviation is large,
correspondence analysis is very uncertain of the location of the point in the population.
On the other hand, if the standard deviation is small, then the correspondence analysis
is fairly certain that this point is located very close to the point given by the solution.

In a multidimensional solution, if the correlation between dimensions is large, it
may not be possible to locate a point in the correct dimension with much certainty.

In such cases, multivariate confidence intervals must be calculated using the
variance/covariance matrix that can be written to a file.

The confidence statistics for the row and column scores are shown. The standard
deviations for the two manager categories are larger than the others, likely due to their
relatively small numbers. The standard deviation for heavy smokers is also larger for
the same reason. If you look at the correlations between the dimensions for the scores,
you see that the correlations are generally small for the row and column scores with the
exception of junior employees, with a correlation of 0.611.

Figure 12-14
Confidence statistics for row scores
Standard Deviation in
Dimension Correlation

Staff Group 1 2 1-2
SrManagers 614 917 101
JrManagers A61 A1 007
Sr Employees 110 187 07
JrEmployees 118 124 B11
Secretaries 158 153 -.360
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Figure 12-15
Confidence statistics for column scores
Standard Deviation in
Dimension Correlation
Smoking 1 2 1-2
None 18 145 402
Light 281 292 054
Medium 79 332 020
Heawy 361 441 -155

Supplementary Profiles

In correspondence analysis, additional categories can be represented in the space
describing the relationships between the active categories. A supplementary profile
defines a profile across categories of either the row or column variable and does not
influence the analysis in any way. The data file contains one supplementary row and
two supplementary columns.

The national average of people in each smoking category defines a supplementary
row profile. The two supplementary columns define two column profiles across the
categories of staff. The supplementary profiles define a point in either the row space
or the column space. Because you will focus on both the rows and the columns
separately, you will use principal normalization.
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Running the Analysis

vV v v v Vv

Figure 12-16
Define Row Range dialog box

Comespondence Analysis: Define Row Range E2

rCategory range for row vanable: staff ———————————
Minimum wvalue: I‘I
Ll Cancel
Update ;l
Maximum value: IE Help

—Category Constraints

' None
(" Categories must be equal
{* Category is supplemental

To add the supplementary categories and obtain a principal normalization solution,
recall the Correspondence Analysis dialog box.

Select staff and click Define Range.

Type 6 as the maximum value and click Update.

Select 6 in the Category Constraints list and select Category is supplemental.
Click Continue.

Select smoke and click Define Range in the Correspondence Analysis dialog box.
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vV v v v VY

Figure 12-17
Define Column Range dialog box
—Category range for column variable: smoke —————
Minimum value: 1
| e | (=]
Maximum value: IE Help
—Category Constraints
" None
(" Categories must be equal
{* Category is supplemental
Type 6 as the maximum value and click Update.
Select 5 in the Category Constraints list and select Category is supplemental.
Select 6 in the Category Constraints list and select Category is supplemental.
Click Continue.
Click Model in the Correspondence Analysis dialog box.
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Figure 12-18
Model dialog box

Comespondence Analysis: Model

U Cal Uit mesrs are rerms

» Select Principal as the normalization method.
» Click Continue.

» Click Plots in the Correspondence Analysis dialog box.
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Figure 12-19
Plots dialog box

Correspondence Analysis: Plots

dimEnEom;:
Highest dimersiar:

» Select Row points and Column points in the Scatterplots group.
» Click Continue.

» Click OK in the Correspondence Analysis dialog box.

The row points plot shows the first two dimensions for the row points with the
supplementary point for National Average. National Average lies far from the origin,
indicating that the sample is not representative of the nation in terms of smoking
behavior. Secretaries and senior employees are close to the national average, whereas
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junior managers are not. Thus, secretaries and senior employees have smoking
behaviors similar to the national average, but junior managers do not.

Figure 12-20
Row points (principal normalization)

o]
JrManagers
0.2+ O SrManagers

01

Dimension 2

00 - Q SrEmployees

[s]
O Secretaries JrEmployees
-0.1 =

© Mational Average

-04 -0.3 -0z -01 oo 01 02 03

Dimension 1

The column points plot displays the column space with the two supplementary
points for alcohol consumption. Alcohol lies near the origin, indicating a close
correspondence between the alcohol profile and the average column profile. However,
No Alcohol differs from the average column profile, illustrated by the large distance
from the origin. The closest point to No Alcohol is Light. The light smokers profile

is most similar to the nondrinkers. Among the smokers, Medium is next closest and
Heavy is farthest. Thus, there is a progression in similarity to nondrinking from light
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to heavy smoking. However, the relatively high proportion of secretaries in the No
Alcohol group prevents any close correspondence to any of the smoking categories.

Figure 12-21
Column points (principal normalization)
02 o
Heawy
01 -
O Alcohaol
2 Mone
00 — o
(3] .
- Medium
2
2 01—
£ o Light
=
02 -
03
© Mo Alcohol
04 T T T T T T
04 @03 02 0 00 04 02 03
Dimension 1

Example: Perceptions of Coffee Brands

The previous example involved a small table of hypothetical data. Actual applications
often involve much larger tables. In this example, you will use data pertaining to
perceived images of six iced-coffee brands (Kennedy, Riquier, and Sharp, 1996). This
data set can be found in coffee.sav, located in the \tutorial\sample_files\ subdirectory
of the directory in which you installed SPSS.

For each of 23 iced-coffee image attributes, people selected all brands that were

described by the attribute. The six brands are denoted as AA, BB, CC, DD, EE, and
FF to preserve confidentiality.



277

Correspondence Analysis

Table 12-1

Iced-coffee attributes

Image attribute | Label Image attribute Label

good hangover cure fattening brand fattening

cure

low fat/calorie low fat | appeals to men men

brand

brand for children |children |South Australian South
brand Australian

working class working | traditional/old traditional

brand fashioned brand

rich/sweet brand | sweet premium quality premium
brand

unpopular brand | unpopular| healthy brand healthy

brand for fat/ugly |ugly high caffeine brand | caffeine

people

very fresh fresh new brand new

brand for yuppies |yuppies |brand for attractive | attractive
people

nutritious brand | nutritious | tough brand tough

brand for women |Wwomen |popular brand popular

minor brand minor

Initially, you will focus on how the attributes are related to each other and how the
brands are related to each other. Using principal normalization spreads the total
inertia once over the rows and once over the columns. Although this prevents biplot
interpretation, the distances between the categories for each variable can be examined.

Running the Analysis

do this, from the menus choose:

Data
Weight Cases...

» The setup of the data requires that the cases be weighted by the variable freq. To
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Figure 12-22
Weight Cases dialog box

%image " Do not weight cases oK I
brand
& Weight cases by Paste |
Frequency Varable:
= o ]
n
Current Status: Weight cases by freq Help

» Weight cases by freq.
» Click OK.

» To obtain an initial solution in five dimensions with principal normalization, from
the menus choose:

Analyze
Data Reduction
Correspondence Analysis...

Figure 12-23
Correspondence Analysis dialog box
Il Comespondence Analysis
> brand e ;4 |
Pireq E = Easte |
Define Range... |
_Beset |
Column:
i =
[Efite Famge.. | Help |
Model.. | Sutsties. | Pl |

» Select image as the row variable.

» Click Define Range.
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Figure 12-24
Define Row Range dialog box

Comespondence Analysis: Define Row Range

1
2
3
4
5
6
7
8
]

Type 1 as the minimum value.

Type 23 as the maximum value.
Click Update.

Click Continue.

Select brand as the column variable.

Click Define Range in the Correspondence Analysis dialog box.
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Figure 12-25
Define Column Range dialog box

» Type 1 as the minimum value.
» Type 6 as the maximum value.
» Click Update.

» Click Continue.

» Click Model in the Correspondence Analysis dialog box.
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Figure 12-26
Model dialog box

Comespondence Analysis: Model

U Cal Uit mesrs are rerms

» Select Principal as the normalization method.
» Click Continue.

» Click Plots in the Correspondence Analysis dialog box.
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Figure 12-27
Plots dialog box

Correspondence Analysis: Plots

J Biplat

IMEREIE;:
ahest dimernsian:

» Select Row points and Column points in the Scatterplots group.

» Click Continue.

» Click OK in the Correspondence Analysis dialog box.

Dimensionality

The inertia per dimension shows the decomposition of the total inertia along each
dimension. Two dimensions account for 83% of the total inertia. Adding a third
dimension adds only 8.6% to the accounted-for inertia. Thus, you elect to use a
two-dimensional representation.



283

Figure 12-28

Inertia per dimension

Correspondence Analysis

Froportion of Inertia

Confidence Singular
Value

Singular Chi Accounted Standard |Comelaticn
Dimensicn | Walus Inertis [ Square Sig. for Cumulstive | Deviation 2
1 Jn 508 6829 829 Rilif:} 132
2 399 158 188 827 014
3 263 068 ik 813
4 234 .0EE il B8z
5 121 018 018 1.000
Total 804 (374897 0003 1.000 1.000

8. 110 degrees of freedom

Contributions

The row points overview shows the contributions of the row points to the inertia of the
dimensions and the contributions of the dimensions to the inertia of the row points. If
all points contributed equally to the inertia, the contributions would be 0.043. Healthy
and low fat both contribute a substantial portion to the inertia of the first dimension.
Men and tough contribute the largest amounts to the inertia of the second dimension.
Both ugly and fresh contribute very little to either dimension.
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Figure 12-29
Attribute contributions
Soore in
Dimension Contribution

Of Point to

Inertia of Of Dimensicn to Inertia

Dimension of Point
image Mass 1 2 Inertia 1 2 1 2 Total
fattening 080 | -514| -265 .03z 042 035 852 T3 825
mmen 081 -.852 .825 072 .o72 219 812 480 992
South Australian 057 -303| -350 048 010 044 14 182 286
traditional 040 -703| -532 043 039 07 454 280 715
premium 042 -444| -582 028 016 090 258 509 805
heslthy 053 | 1.200 T4 e 152 010 953 020 973
caffeine 047 | -452 124 014 019 005 .T0Z| 052 755
new 047|260 147 048 085 008 (| B33 .0 214
attractive 041 657 | -.050 019 035 .001 811 007 918
tough 032 | -850 | 1.002 070 058 248 404 580 984
popular 080 | -89V | -042 038 058 1001 771 003 TT4
cure 02g8| -3B89 268 it 008 on 448 209 855
low fat 0EZ2| 1.205 188 o84 ATE( 012 B .021 .88z
children 024| -282| -812 017 008 | .04 78| 280 559
working 048 | -TEE ATT 040 .055| 084 | 882 | .255 .24g
sweet 038 | -519| -683 048 020 112 212 388 580
unpopular 024 489 188 010 011 005 585 {085 870
ugly 030 008 | -1089 ik 000 ooz 000 31 31
fresh .03g| -085| -100 ooz 2001 .00z 188 214 410
yuppies 024 20| -20M 012 010 012|282 | 246 837
nutriticus 040 722 .055 022 041 001 245 | 008 851
(women 054 .T58 -.083 0az .08z 001 985 007 a7z
minor 1040 579 083 023 027 001 593 007 J800
Active Total 1.000 804 | 1.000 | 1.000

Two dimensions contribute a large amount to the inertia for most row points. The large
contributions of the first dimension to healthy, new, attractive, low fat, nutritious,

and women indicate that these points are very well represented in one dimension.
Consequently, the higher dimensions contribute little to the inertia of these points,
which will lie very near the horizontal axis. The second dimension contributes most
to men, premium, and tough. Both dimensions contribute very little to the inertia for
South Australian and ugly, so these points are poorly represented.
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The column points overview displays the contributions involving the column points.
Brands CC and DD contribute the most to the first dimension, whereas EE and FF
explain a large amount of the inertia for the second dimension. AA and BB contribute
very little to either dimension.

Figure 12-30
Brand contributions
Score in
Dirmension Contribution
Of Point to
Inartia of Of Dimension to Inertia of
Dirngnsicn Point
brand Mass 1 2 Inertia 1 2 1 2 Total
LY 217 | -853| 048 127 187 .003 744 004 748
A3 -284| -404 ik} 021 124 138 272 407
cC 185 998 | .076 193 382 007 951 Rilil:} 857
oD 182 815 101 148 267 .010 828 on 939
EE 152 | -651 yoe 153 127 ATT 420 454 214
FF 153 [ -343| -818 107 038 389 189 550 718
Active Total | 1.000 804 | 1.000| 1.000

In two dimensions, all brands but BB are well represented. CC and DD are represented
well in one dimension. The second dimension contributes the largest amounts for EE
and FF. Notice that AA is represented well in the first dimension but does not have a
very high contribution to that dimension.

The row points plot shows that fresh and ugly are both very close to the origin,
indicating that they differ little from the average row profile. Three general
classifications emerge. Located in the upper left of the plot, tough, men, and working
are all similar to each other. The lower left contains sweet, fattening, children, and
premium. In contrast, healthy, low fat, nutritious, and new cluster on the right side of
the plot.
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Figure 12-31
Plot of image attributes (principal normalization)
104 ©tough
O men
": 054 ©owarking
o
g O cure unpopular healthy
.E O caffeine min . onewa low fat
o 004 o popular nutritio
PP e5ho 0 ugly sftractves, © WO
O-fatteoning O yuppies
p South Australian
05 tradlgunal - O children
Premiug syest
T T T T
10 05 0.0 05 10

Dimension 1
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Notice in the column points plot that all brands are far from the origin, so no brand
is similar to the overall centroid. Brands CC and DD group together at the right,

whereas brands BB and FF cluster in the lower half of the plot. Brands AA and EE are
not similar to any other brand.

Figure 12-32
Plot of brands (principal normalization)
0.7s

OEE

050 —

025

o DDo d
0.00 — cc

Dimension 2

-0.25 o

-0.50

-1.0 05 0o 03 1.0

Dimension 1

Symmetrical Normalization

How are the brands related to the image attributes? Principal normalization cannot
address these relationships. To focus on how the variables are related to each other,
use symmetrical normalization. Rather than spread the inertia twice (as in principal
normalization), symmetrical normalization divides the inertia equally over both the
rows and columns. Distances between categories for a single variable cannot be
interpreted, but distances between the categories for different variables are meaningful.
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Figure 12-33
Model dialog box

Comespondence Analysis: Model

» To produce the following solution with symmetrical normalization, recall the
Correspondence Analysis dialog box and click Model.

» Select Symmetrical as the normalization method.
» Click Continue.

» Click OK in the Correspondence Analysis dialog box.
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In the upper left of the resulting biplot, brand EE is the only tough, working brand and
appeals to men. Brand AA is the most popular and also viewed as the most highly

caffeinated. The sweet, fattening brands include BB and FF. Brands CC and DD, while
perceived as new and healthy, are also the most unpopular.

Figure 12-34
Biplot of the brands and the attributes (symmetrical normalization)
2

) brand
o tough ) image

O men
o EE

O warking

O cunpopular low fat
o caffeine . ° DDdgfé 10 "
o ity os © cchealthy
O AA oc
popular fresnoo yg tive @ women

Southfatistrinian
BB

Dimension 2

O yuppies
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-1 0 1 2

Dimension 1

For further interpretation, you can draw a line through the origin and the two image
attributes men and yuppies, and project the brands onto this line. The two attributes
are opposed to each other, indicating that the association pattern of brands for men
is reversed compared to the pattern for yuppies. That is, men are most frequently
associated with brand EE and least frequently with brand CC, whereas yuppies are
most frequently associated with brand CC and least frequently with brand EE.

Example: Flying Mileage between Cities

Correspondence analysis is not restricted to frequency tables. The entries can be any
positive measure of correspondence. In this example, you use the flying mileages
between 10 American cities. This data set can be found in flying.sav, located in the
\tutorial\sample_files\ subdirectory of the directory in which you installed SPSS.
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Table 12-2
City labels
City Label City Label
Atlanta Atl Miami Mia
Chicago Chi New York NY
Denver Den San Francisco SF
Houston Hou Seattle Sea
Los Angeles LA Washington, DC DC

» To view the flying mileages, first weight the cases by the variable dist. From the
menus choose:

Data
Weight Cases...

Figure 12-35
Weight Cases dialog box

Wl Weight Cases

gmw " Do not weight cases OK I
col
¢ Weight cases by Paste |
Frequency Varable: R
| <> dist _—I
Cancel
Current Status: Do not weight cases Help

» Weight cases by dist.
» Click OK.

» Now, to view the mileages as a crosstabulation, from the menus choose:

Analyze
Descriptive Statistics
Crosstabs...
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Figure 12-36
Crosstabs dialog box

I Crosstabs E

@ dt Row(s): oK I
&) cityname Brow Paste |
_Besat |
Column(s):
ol Cancel
E Help

Layer 1of 1

Pregiousl et |

[~ Display clustered bar charts

[~ Suppress tables

Bxact... | Siatistcs... | Cells.. | Fomat...

» Select row as the row variable.
» Select col as the column variable.

» Click OK.

The following table contains the flying mileages between the cities. Notice that there
is only one variable for both rows and columns and that the table is symmetric; the
distance from Los Angeles to Miami is the same as the distance from Miami to Los
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Angeles. Moreover, the distance between any city and itself is 0. The active margin
reflects the total flying mileage from each city to all other cities.

Figure 12-37
Flying mileages between 10 American cities
Count
col
Atl Chi Den Hou LA Mis Ny SF Ses Dc Totsl
row Atl 0 58T 1212 701 1938 804 T48 2139 2182 543 10852
Chi 587 0 920 240 1745 1188 713 1858 1737 597 10285
Den 1212 520 0 879 831 1726 1831 549 1021 1484 106683
Hou 701 840 8759 0 1374 558 1420 1645 1881 1220 11038
LA 1926 | 1748 821 1274 0| 2239 | 2481 247 989 | 2200 | 14282
Mia 804 1188 1726 988 2339 0 1092 2594 2734 923 14188
Ny T48 713 1831 1420 2451 1082 o 2571 2408 205 13239
SF 2139 1858 245 1845 347 2524 2571 0 878 2442 15223
Sea 2182 1737 1021 18591 559 2734 2408 878 0 2329 15939
oc 543 597 1494 1220 2300 523 205 24432 2329 0 12053
Total 10852 10285 10883 | 11038 14282 | 14188 13239 15223 | 15933 12053 | 127542

In general, distances are dissimilarities; large values indicate a large difference between
the categories. However, correspondence analysis requires an association measure;
thus, you need to convert dissimilarities into similarities. In other words, a large table
entry must correspond to a small difference between the categories. Subtracting every
table entry from the largest table entry converts the dissimilarities into similarities.

» To create the similarities and store them in a new variable, sim, from the menus choose:

Transform
Compute...
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Figure 12-38
Compute Variable dialog box

Il Compute Variable

» Type sim as the target variable.
» Type 2734-dist as the numeric expression.

» Click OK.
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Figure 12-39
Weight Cases dialog box
®"°"‘I" " Do not weight cases oK I
%;Eﬁ " Weight cFases by - Paste |
Frequency Varable: Reset
[ [om e |
Cancel
Curert Status: Weight cases by dist Help

Now reweight the cases by the similarity measure by recalling the Weight Cases dialog
box:

» Weight cases by sim.

» Click OK.

» Finally, to obtain a correspondence analysis for the similarities, from the menus choose:
Analyze

Data Reduction
Correspondence Analysis...

Figure 12-40

Correspondence Analysis dialog box
ol Row: |
@ dist E jow2) |

) East
@ sim Define Range... | ﬂl
Reset
Column: —l

[F
]| Cares |

[efine Hange... | Help |

Model.. | Satisies.. |  Plots.. |

» Select row as the row variable.

» Click Define Range.
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Figure 12-41
Define Row Range dialog box

Comespondence Analysis: Define Row Range

1
2
3
4
5
6
7
8
]

Type 1 as the minimum value.
Type 10 as the maximum value.
Click Update.

Click Continue.

Select col as the column variable.

Click Define Range in the Correspondence Analysis dialog box.
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Figure 12-42
Define Column Range dialog box

1
2
3
4
5
6
7
8
]

Type 1 as the minimum value.
Type 10 as the maximum value.
Click Update.

Click Continue.

vV v v v Vv

Click Model in the Correspondence Analysis dialog box.
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Figure 12-43
Model dialog box

Comespondence Analysis: Model

U Cal Uit mesrs are rerms

» Select Principal as the normalization method.
» Click Continue.

» Click Plots in the Correspondence Analysis dialog box.
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Figure 12-44
Plots dialog box

Correspondence Analysis: Plots

J Biplat
u

» Select Row points in the Scatterplots group.
» Click Continue.

» Click OK in the Correspondence Analysis dialog box.

Correspondence Table

The new distance of 0 between Seattle and Miami indicates that they are most distant
(least similar), whereas the distance of 2529 between New York and Washington, D.C.,
indicates that they are the least distant (most similar) pair of cities.
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Figure 12-45
Correspondence table for similarities
col
Active
row Atl Chi Den Hou L& Mis WY SF Ses Dc Margin
Atl 2734 2147 1522 2033 798 2130 1988 595 552 2191 15888
Chi 2147 2734 1814 1724 =) 1548 20 878 997 2137 17055
Den 1522 1814 2734 1855 1503 1008 1103 1785 1713 1240 16877
Hou 2033 1724 1855 2734 13860 1766 1314 1088 843 1514 15302
LA T8 589 1503 1380 2734 395 283 2387 1775 434 13058
Mia 2130 1548 1008 1768 395 2734 1842 140 0 1811 13172
WY 1888 2021 1102 1214 2832 1642 2724 182 326 2828 | 14101
SF 585 278 1785 1088 2387 140 163 2724 2058 282 | 12117
Sea 582 987 1712 g42 1775 0 226 2058 2724 408 [ 11401
Dc 2191 2137 1240 1514 434 1811 2529 292 405 2734 15287
Active Margin 1686888 170585 | 168877 16302 | 13058 13172 14101 12117 | 11401 15287 | 145858

Row and Column Scores

By using flying mileages instead of driving mileages, the terrain of the United States
does not impact the distances. Consequently, all similarities should be representable
in two dimensions. You center both the rows and columns and use principal
normalization. Because of the symmetry of the correspondence table and the principal
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normalization, the row and column scores are equal and the total inertia is in both, so it
does not matter whether you inspect the row or column scores.

Figure 12-46
Points for 10 cities
0.4
02 - O Mia
© Hou
o] O LA
=
o o Atl o
2 00 — © Den SF
1]
g O Chi
oDC
02 ONY o
Sed
04 T T T T
06 03 00 0.3 0.6 0.9
Dimension 1

The locations of the cities are very similar to their actual geographical locations,
rotated about the origin. Cities that are further south have larger values along the

second dimension, whereas cities that are further west have larger values along the
first dimension.

Recommended Readings

See the following texts for more information on correspondence analysis:

Fisher, R. A. 1938. Statistical methods for research workers. Edinburgh: Oliver and
Boyd.

Fisher, R. A. 1940. The precision of discriminant functions. Annals of Eugenics,
10, 422-4209.
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Gilula, Z., and S. J. Haberman. 1988. The analysis of multivariate contingency tables
by restricted canonical and restricted association models. Journal of the American
Statistical Association, 83, 760-771.
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13

Multiple Correspondence
Analysis

The purpose of multiple correspondence analysis, also known as homogeneity analysis,
is to find quantifications that are optimal in the sense that the categories are separated
from each other as much as possible. This implies that objects in the same category are
plotted close to each other and objects in different categories are plotted as far apart as
possible. The term homogeneity also refers to the fact that the analysis will be most
successful when the variables are homogeneous; that is, when they partition the objects
into clusters with the same or similar categories.

Example: Characteristics of Hardware

To explore how multiple correspondence analysis works, you will use data from
Hartigan (Hartigan, 1975), which can be found in screws.sav, located in the
\tutorial\sample_files\ subdirectory of the directory in which you installed SPSS. This
dataset contains information on the characteristics of screws, bolts, nuts, and tacks.
The following table shows the variables, along with their variable labels, and the value
labels assigned to the categories of each variable in the Hartigan hardware dataset.

Table 13-1
Hartigan hardware dataset

Variable name Variable label Value label

thread Thread Yes_Thread, No_Thread

head Head form Flat, Cup, Cone, Round, Cylinder
indhead Indentation of head None, Star, Slit

bottom Bottom shape sharp, flat

length Length in half inches | 1/2_in, 1_in, 1_1/2_in,2_in,2_1/2_in

303
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Variable name Variable label Value label
brass Brass Yes_Br, Not_Br
object Object tack, naill, nail2, nail3, nail4, nails,
nail6, nail7, nail8, screwl, screw2,
screw3, screwd, screw5, boltl, bolt2,
bolt3, bolt4, bolt5, bolt6, tackl, tack2,
nailb, screwb
Running the Analysis

» To obtain a Multiple Correspondence Analysis, from the menus choose:

Analyze
Data Reduction
Optimal Scaling...

Figure 13-1
Optimal Scaling dialog box

Optimal Scaling

—Optimal Scaling Level ———————————— Define
& Al variables multiple nominal:
" Some vanable(s) not muttiple nominal

r— Number of Sets of Variables
' One sst
" Multiple ssts

— Selected Analysis
Multiple Comespondence Analysis

[Categonizal Frincipal Components

[anlinean Canameal Carmelatian

» Make sure All variables multiple nominal and One set are selected, and click Define.
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Figure 13-2
Multiple Correspondence Analysis dialog box

I Multiple Correspondence Analysis

» Select Thread through Length in half-inches as analysis variables.
» Select object as a labeling variable.

» Click Object in the Plots group.
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Figure 13-3
Object Plots dialog box

MCA: Object Plots

» Choose to label objects by Variable.
» Select thread through object as labeling variables.

» Click Continue, and then click Variable in the Plots group of the Multiple
Correspondence Analysis dialog box.
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Figure 13-4

Variable Plots dialog box

MCA: Variable Plots E2
EWFE;d Continue I
[F-]
indhead Cancel
bottom
brass Help
length

rTransformation Plots

o | |

DimEnsicms: I 2

I™ Include residual plots

r—Discrimination Measures ——

¥ Display plot
&' Use all variables
" Use selected variables

» Choose to produce a joint category plot for thread through length.
» Click Continue.

» Click OK in the Multiple Correspondence Analysis dialog box.

Model Summary

Homogeneity analysis can compute a solution for several dimensions. The maximum
number of dimensions equals either the number of categories minus the number of
variables with no missing data or the number of observations minus one, whichever

is smaller. However, you should rarely use the maximum number of dimensions. A
smaller number of dimensions is easier to interpret, and after a certain number of
dimensions, the amount of additional association accounted for becomes negligible. A
one-, two-, or three-dimensional solution in homogeneity analysis is very common.
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Figure 13-5
Model summary
Wariance Accounted For
Cronbach’s Total

Dimension Alpha (Eigenvalue) Inertia % of Variance
1 878 3v7 B21 62.123
2 857 2209 368 36.809
Total 5936 989
Mean _796= 2968 495 49 466

a. Mean Cronbach's Alpha is based on the mean Eigenvalue.

Nearly all of the variance in the data is accounted for by the solution, 62.1% by the
first dimension and 36.8% by the second.

The two dimensions together provide an interpretation in terms of distances. If a
variable discriminates well, the objects will be close to the categories to which they
belong. Ideally, objects in the same category will be close to each other (that is, they
should have similar scores), and categories of different variables will be close if they
belong to the same objects (that is, two objects that have similar scores for one variable
should also score close to each other for the other variables in the solution).

Object Scores

After examining the model summary, you should look at the object scores. You can
specify one or more variables to label the object scores plot. Each labeling variable
produces a separate plot labeled with the values of that variable. We’ll take a look at
the plot of object scores labeled by the variable object. This is just a case-identification
variable and was not used in any computations.

The distance from an object to the origin reflects variation from the “average”
response pattern. This average response pattern corresponds to the most frequent
category for each variable. Objects with many characteristics corresponding to
the most frequent categories lie near the origin. In contrast, objects with unique
characteristics are located far from the origin.
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Figure 13-6
Object scores plot labeled by object
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Examining the plot, you see that the first dimension (the horizontal axis) discriminates
the screws and bolts (which have threads) from the nails and tacks (which don’t
have threads). This is easily seen on the plot since screws and bolts are on one end
of the horizontal axis and tacks and nails are on the other. To a lesser extent, the first
dimension also separates the bolts (which have flat bottoms) from all the others (which
have sharp bottoms).

The second dimension (the vertical axis) seems to separate SCREWI and NAIL6
from all other objects. What SCREW1I and NAIL6 have in common are their values
on variable length—they are the longest objects in the data. Moreover, SCREW1I lies
much farther from the origin than the other objects, suggesting that, taken as a whole,
many of the characteristics of this object are not shared by the other objects.

The object scores plot is particularly useful for spotting outliers. SCREWI might be
considered an outlier. Later, we’ll consider what happens if you drop this object.



310

Chapter 13

Discrimination Measures

Before examining the rest of the object scores plots, let’s see if the discrimination
measures agree with what we’ve said so far. For each variable, a discrimination
measure, which can be regarded as a squared component loading, is computed for
each dimension. This measure is also the variance of the quantified variable in that
dimension. It has a maximum value of 1, which is achieved if the object scores fall
into mutually exclusive groups and all object scores within a category are identical.
(Note: This measure may have a value greater than 1 if there are missing data.) Large
discrimination measures correspond to a large spread among the categories of the
variable and, consequently, indicate a high degree of discrimination between the
categories of a variable along that dimension.

The average of the discrimination measures for any dimension equals the percentage
of variance accounted for that dimension. Consequently, the dimensions are ordered
according to average discrimination. The first dimension has the largest average
discrimination, the second dimension has the second largest average discrimination,
and so on, for all dimensions in the solution.

Figure 13-7
Plot of discrimination measures
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As noted on the object scores plot, the discrimination measures plot shows that the first
dimension is related to variables Thread and Bottom shape. These variables have large
discrimination measures on the first dimension and small discrimination measures on
the second dimension. Thus, for both of these variables, the categories are spread far
apart along the first dimension only. Length in half-inches has a large value on the
second dimension but a small value on the first dimension. As a result, length is closest
to the second dimension, agreeing with the observation from the object scores plot that
the second dimension seems to separate the longest objects from the rest. Indentation
of head and Head form have relatively large values on both dimensions, indicating
discrimination in both the first and second dimensions. The variable Brass, located
very close to the origin, does not discriminate at all in the first two dimensions. This
makes sense, since all of the objects can be made of brass or not made of brass.

Category Quantifications

Recall that a discrimination measure is the variance of the quantified variable along a
particular dimension. The discrimination measures plot contains these variances,
indicating which variables discriminate along which dimension. However, the same
variance could correspond to all of the categories being spread moderately far apart or
to most of the categories being close together, with a few categories differing from this
group. The discrimination plot cannot differentiate between these two conditions.
Category quantification plots provide an alternative method of displaying
discrimination of variables that can identify category relationships. In this plot,
the coordinates of each category on each dimension are displayed. Thus, you can
determine which categories are similar for each variable.



312

Chapter 13
Figure 13-8
Category quantifications
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Length in half-inches has five categories, three of which group together near the

top of the plot. The remaining two categories are in the lower half of the plot, with
the 2_1/2_in category very far from the group. The large discrimination for length
along dimension 2 is a result of this one category being very different from the other
categories of length. Similarly, for Head form, the category STAR is very far from the
other categories and yields a large discrimination measure along the second dimension.
These patterns cannot be illustrated in a plot of discrimination measures.

The spread of the category quantifications for a variable reflects the variance and
thus indicates how well that variable is discriminated in each dimension. Focusing
on dimension 1, the categories for Thread are far apart. However, along dimension
2, the categories for this variable are very close. Thus, Thread discriminates better in
dimension 1 than in dimension 2. In contrast, the categories for Head form are spread
far apart along both dimensions, suggesting that this variable discriminates well in
both dimensions.

In addition to determining the dimensions along which a variable discriminates and
how that variable discriminates, the category quantification plot also compares variable
discrimination. A variable with categories that are far apart discriminates better than a
variable with categories that are close together. For example, along dimension 1,
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the two categories of Brass are much closer to each other than the two categories of
Thread, indicating that Thread discriminates better than Brass along this dimension.
However, along dimension 2, the distances are very similar, suggesting that these

variables discriminate to the same degree along this dimension. The discrimination

measures plot discussed previously identifies these same relationships by using
variances to reflect the spread of the categories.

A More Detailed Look at Object Scores

A greater insight into the data can be gained by examining the object scores plots

labeled by each variable. Ideally, similar objects should form exclusive groups, and
these groups should be far from each other.

Figure 13-9
Object scores labeled with Thread
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The plot labeled with Thread shows that the first dimension separates Yes_Thread
and No_Thread perfectly. All of the objects with threads have negative object
scores, whereas all of the nonthreaded objects have positive scores. Although the

two categories do not form compact groups, the perfect differentiation between the
categories is generally considered a good result.
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Figure 13-10
Object scores labeled with Head form
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The plot labeled with Head form shows that this variable discriminates in both
dimensions. The FLAT objects group together in the lower right corner of the plot,
whereas the CUP objects group together in the upper right. CONE objects all lie in
the upper left. However, these objects are more spread out than the other groups and,
thus, are not as homogeneous. Finally, CYLINDER objects cannot be separated from
ROUND objects, both of which lie in the lower left corner of the plot.
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Figure 13-11
Object scores labeled with Length in half-inches
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The plot labeled with Length in half-inches shows that this variable does not
discriminate in the first dimension. Its categories display no grouping when projected
onto a horizontal line. However, Length in half-inches does discriminate in the second
dimension. The shorter objects correspond to positive scores, and the longer objects
correspond to large negative scores.
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Figure 13-12
Object scores labeled with Brass
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The plot labeled with Brass shows that this variable has categories that cannot be
separated very well in the first or second dimensions. The object scores are widely

spread throughout the space. The brass objects cannot be differentiated from the
nonbrass objects.

Omission of Outliers

In homogeneity analysis, outliers are objects that have too many unique features. As
noted earlier, SCREWI might be considered an outlier.

To delete this object and run the analysis again, from the menus choose:

Data
Select Cases...



317

Multiple Correspondence Analysis

Figure 13-13
Select Cases dialog box

Il Select Cases

» Select If condition is satisfied.

» Click If.
Figure 13-14
If dialog box
Select Cases: If
@Thread thread]

& Head form [head] |
> Indertation of head [in

» Type object ~= 16 as the condition.
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» Click Continue.
» Click OK in the Select Cases dialog box.

» Finally, recall the Multiple Correspondence Analysis dialog box, and click OK.

Figure 13-15
Model summary (outlier removed)
Wariance Accounted For
Cronbach’'s Total

Dimension Alpha (Eigenvalue) Inertia % of Variance
1 B85 3815 636 63.591
2 623 2081 347 34676
Total 5896 883
Mean 7932 2048 491 49133

d. Mean Cronbach’s Alpha is based on the mean Eigenvalue.

The eigenvalues shift slightly. The first dimension now accounts for a little more of
the variance.
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Discrimination measures
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Multiple Correspondence Analysis

As shown in the discrimination plot, Indentation of head no longer discriminates in the
second dimension, whereas Brass changes from no discrimination in either dimension
to discrimination in the second dimension. Discrimination for the other variables is

largely unchanged.
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Figure 13-17
Object scores labeled with Brass (outlier removed)
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The object scores plot labeled by Brass shows that the four brass objects all appear
near the bottom of the plot (three objects occupy identical locations), indicating
high discrimination along the second dimension. As was the case for Thread in the

previous analysis, the objects do not form compact groups, but the differentiation of
objects by categories is perfect.
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Figure 13-18
Object scores labeled with Indentation of head (outlier removed)
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The object scores plot labeled by Indentation of head shows that the first dimension
discriminates perfectly between the non-indented objects and the indented objects, as
in the previous analysis. In contrast to the previous analysis, however, the second
dimension cannot now distinguish the two categories.

Thus, the omission of SCREW 1, which is the only object with a star-shaped head,
dramatically affects the interpretation of the second dimension. This dimension now
differentiates objects based on Brass, Head form, and Length in half-inches.

Recommended Readings

See the following texts for more information on multiple correspondence analysis:
Benzécri, J. P. 1992. Correspondence analysis handbook. New York: Marcel Dekker.

Guttman, L. 1941. The quantification of a class of attributes: A theory and method of
scale construction. In: The Prediction of Personal Adjustment, P. Horst, ed. New York:
SocialScience Research Council, 319-348.

Meulman, J. J. 1982. Homogeneity analysis of incomplete data. Leiden: DSWO Press.
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Meulman, J. J. 1996. Fitting a distance model to homogeneous subsets of variables:
Points of view analysis of categorical data. Journal of Classification, 13, 249-266.

Meulman, J. J., and W. J. Heiser. 1997. Graphical display of interaction in multiway
contingency tables by use of homogeneity analysis. In: Visual Display of Categorical
Data, M. Greenacre, and J. Blasius, eds. New York: Academic Press, 277-296.

Nishisato, S. 1984. Forced classification: A simple application of a quantification
method. Psychometrika, 49, 25-36.

Tenenhaus, M., and F. W. Young. 1985. An analysis and synthesis of multiple
correspondence analysis, optimal scaling, dual scaling, homogeneity analysis, and
other methods for quantifying categorical multivariate data. Psychometrika, 50,
91-119.

Van Rijckevorsel, J. 1987. The application of fuzzy coding and horseshoes in multiple
correspondence analysis. Leiden: DSWO Press.
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Multidimensional Scaling

Given a set of objects, the goal of multidimensional scaling is to find a representation
of the objects in a low-dimensional space. This solution is found by using the
proximities between the objects. The procedure minimizes the squared deviations
between the original, possibly transformed, object proximities and their Euclidean
distances in the low-dimensional space.

The purpose of the low-dimensional space is to uncover relationships between
the objects. By restricting the solution to be a linear combination of independent
variables, you may be able to interpret the dimensions of the solution in terms of these
variables. In the following example, you will see how 15 different kinship terms can be
represented in three dimensions and how that space can be interpreted with respect to
the gender, generation, and degree of separation of each of the terms.

Example: An Examination of Kinship Terms

Rosenberg and Kim (Rosenberg and Kim, 1975) set out to analyze 15 kinship terms
(aunt, brother, cousin, daughter, father, granddaughter, grandfather, grandmother,
grandson, mother, nephew, niece, sister, son, uncle). They asked four groups of college
students (two female, two male) to sort these terms on the basis of similarities. Two
groups (one female, one male) were asked to sort twice, with the second sorting based
on a different criteria from the first sort. Thus, a total of six “sources” were obtained,
as outlined in the following table.

Table 14-1
Source structure of kinship data

Source  Gender Condition Sample size
1 Female Single sort 85
2 Male Single sort 85

323
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Source  Gender Condition Sample size

3 Female First sort 80
4 Female Second sort 80
5 Male First sort 80
6 Male Second sort 80

Each source corresponds to a 15 x 15 proximity matrix, whose cells are equal to
the number of people in a source minus the number of times that the objects were
partitioned together in that source. This data set can be found in kinship_dat.sav,
which is located in the \tutorial\sample_files\ subdirectory of the directory in which
you installed SPSS.

Choosing the Number of Dimensions

It is up to you to decide how many dimensions the solution should have. The scree plot
can help you make this decision.

» To create a scree plot, from the menus choose:

Analyze
Scale
Multidimensional Scaling (PROXSCAL)...
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Figure 14-1
Data Format dialog box

Multidimensional Scaling: Data Format

» Select Multiple matrix sources in the Number of Sources group.

» Click Define.
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Figure 14-2
Multidimensional Scaling dialog box

Multidimensional Scaling (Proximities in Matrices Across Columns)

Proximities:
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@ Brother [brother]

@Cousin [cousin]

® Daughter [daughter]

& Father father] ||

(5] _Peeet |

Paste |

Cancel |
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» Select Aunt through Uncle as proximities variables.

» Select sourceid as the variable identifying the source.

» Click Model.
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Figure 14-3
Model dialog box

Multidimensional Scaling: Model

PN S
Fiarits

» Type 10 as the maximum number of dimensions.
» Click Continue.

» Click Restrictions in the Multidimensional Scaling dialog box.
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Figure 14-4
Restrictions dialog box

Multidimensional Scaling: Restrictions

» Select Linear combination of independent variables.

» Click File to select the source of the independent variables.
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Figure 14-5
Read File dialog box
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» Select kinship_var.sav.

» Click Open.
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Figure 14-6
Restrictions dialog box

Multidimensional Scaling: Restrictions

» Select gender, gener, and degree as restriction variables.

Note that the variable gender has a user-missing value—9 = missing (for cousin). The
procedure treats this as a valid category. Thus, the default linear transformation is
unlikely to be appropriate. Use a nominal transformation instead.
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Figure 14-7
Restrictions dialog box

Multidimensional Scaling: Restrictions

qger val)

degreefinterval)

Select gender.

Select Nominal from the Independent variable transformations drop-down list.
Click Change.

Click Continue.

Click Plots in the Multidimensional Scaling dialog box.
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Figure 14-8
Plots dialog box

Multidimensional Scaling: Plots
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» Select Stress in the Plots group.
» Click Continue.

» Click OK in the Multidimensional Scaling dialog box.
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Figure 14-9
Scree plot
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The procedure begins with a 10-dimensional solution and works down to a
2-dimensional solution. The scree plot shows the normalized raw stress of the solution
at each dimension. You can see from the plot that increasing the dimensionality from 2
to 3 and from 3 to 4 offers large improvements in the stress. After 4, the improvements
are rather small. You will choose to analyze the data by using a 3-dimensional solution,
because the results are easier to interpret.
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A Three-Dimensional Solution

The independent variables gender, gener (generation), and degree (of separation) were
constructed with the intention of using them to interpret the dimensions of the solution.
The independent variables were constructed as follows:

gender 1 = male, 2 = female, 9 = missing (for cousin)

gener The number of generations from you if the term refers to your kin, with
lower numbers corresponding to older generations. Thus, grandparents
are —2, grandchildren are 2, and siblings are O.

degree The number of degrees of separation along your family tree. Thus,
your parents are up 1 node, while your children are down 1 node. Your
siblings are up 1 node to your parents and then down 1 node to them, for
2 degrees of separation. Your cousin is 4 degrees away—?2 up to your
grandparents and then 2 down through your aunt/uncle to them.

The external variables can be found in kinship_var.sav. Additionally, an initial
configuration from an earlier analysis is supplied in kinship_ini.sav.
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Running the Analysis

Figure 14-10
Model dialog box

Multidimensional Scaling: Model

=
Fiarits

» To obtain a three-dimensional solution, recall the Multidimensional Scaling dialog
box and click Model.

» Type 3 as the minimum and maximum number of dimensions.
» Click Continue.

» Click Options in the Multidimensional Scaling dialog box.
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Figure 14-11
Options dialog box

Multidimensional Scaling: Options

[HLmEE

Select Custom as the initial configuration.
Select kinship_ini.sav as the file to read variables from.
Select dim01, dim02, and dim03 as variables.

Click Continue.

v v v v Vv

Click Plots in the Multidimensional Scaling dialog box.
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Figure 14-12
Plots dialog box

Multidimensional Scaling: Plots
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» Select Original vs. transformed proximities and Transformed independent variables.
» Click Continue.

» Click Output in the Multidimensional Scaling dialog box.
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Figure 14-13
Output dialog box

Multidimensional Scaling: Output
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» Select Input data, Stress decomposition, and Variable and dimension correlations.

» Click Continue.

» Click OK in the Multidimensional Scaling dialog box.

Stress Measures

The stress and fit measures give an indication of how well the distances in the solution
approximate the original distances.
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Stress and fit measures
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PROXSCAL minimizes Normalized Raw Stress.

a. Optimal scaling factor = 1.066.

b. Optimal scaling factor = .984.

Multidimensional Scaling

Each of the four stress statistics measures the misfit of the data, while the dispersion
accounted for and Tucker’s coefficient of congruence measure the fit. Lower stress
measures (to a minimum of 0) and higher fit measures (to a maximum of 1) indicate

better solutions.

Figure 14-15
Decomposition of normalized raw stress
Source
SRC 1| SRC 2| SRCc 3| sRCc 4 | sRc 5| SRC 8 | Mean
Object  Aunt 0991 0754 0829 0488 03 0489 0820
Brother 1351 0e74 0498 0813 0813 0597 0807
Cousin 0325 0338 0480 0280 0327 0483 0370
Daughter 0700 0370 0518 0229 0326 0207 03
Father 0751 0482 .DE21 0235 0272 0288 0425
Granddaughter 410 0728 .0801 0707 0780 0368 .0e02
Grandfather 1548 1057 0858 0821 0851 .DE7E 0852
Grandmaother 1880 0978 0858 0844 0818 0827 0548
Grandson 1374 0772 0793 0712 07 0382 {0805
Mother 0813 0482 0528 0229 0260 0227 0423
Nephew 0843 0819 0580 0375 0317 0273 0501
Niece 0850 0577 0503 0353 0337 02680 0480
Sister 21381 0248 0498 .0818 0829 0588 0808
Son .0ges D3T3 0458 0242 0337 0253 0382
Uncle 087y 0781 .De7E 0488 0383 0488 .0&21
MMean 1035 J0es1 .0e132 .0E08 0458 0407 .neza

The decomposition of stress helps you identify which sources and objects contribute
the most to the overall stress of the solution. In this case, most of the stress among the
sources is attributable to sources 1 and 2, while among the objects, most of the stress
is attributable to Brother, Granddaughter, Grandfather, Grandmother, Grandson,

and Sister.
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The two sources that are accountable for most of the stress are the two groups that
sorted the terms only once. This information suggests that the students considered
multiple factors when sorting the terms, and those students who were allowed to sort
twice focused on a portion of those factors for the first sort and then considered the
remaining factors during the second sort.

The objects that account for most of the stress are those objects with a degree of 2.
These people are relations who are not part of the “nuclear” family (Mother, Father,
Daughter, Son) but are nonetheless closer than other relations. This middle position
could easily cause some differential sorting of these terms.

Final Coordinates of the Common Space

The common space plot gives a visual representation of the relationships between
the objects.

Figure 14-16
Common space coordinates
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Look at the final coordinates for the objects in dimensions 1 and 3; this is the plot in
the lower left corner of the scatterplot matrix. This plot shows that dimension 1 (on
the x axis) is correlated with the variable gender, and dimension 3 (on the y axis) is
correlated with gener. From left to right, you see that dimension 1 separates the female
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and male terms, with the genderless term Cousin in the middle. From the bottom of the

plot to the top, increasing values along the axis correspond to terms that are older.
Now look at the final coordinates for the objects in dimensions 2 and 3; this plot

is the plot on the middle right side of the scatterplot matrix. From this plot, you can

see that the second dimension (along the y axis) corresponds to the variable degree,

with larger values along the axis corresponding to terms that are further from the

“nuclear” family.

A Three-Dimensional Solution with Nondefault Transformations

The previous solution was computed by using the default ratio transformation for
proximities and interval transformations for the independent variables gener and
degree. The results are pretty good, but you may be able to do better by using other
transformations. For example, the proximities, gener, and degree all have natural
orderings, but they may be better modeled by an ordinal transformation than a linear

transformation.
Figure 14-17
Model dialog box
Multidimensional Scaling: Model
—Scaling Model ————  ~ Proximity Transformations —————
& |dentity " Ratio p— |
[gle
" Weighted Fuclidean ' Interval
" Generalized Euclidean Help
" Reduced rank [™ Untie tied observations
" Spline
Bt |1
[Veqres; |2
- Shape Irterian kats: |‘|
& Lower+riangular matroc Apply Transformations
¢ Upperriangular matric & Within each source separately
 Full matrix  Agross all sources simultaneously
r— Proximiti r— Dimensions

& Dissimilarties Minimum:

|3
 Similarties endmum: |3




342

Chapter 14

» To rerun the analysis, scaling the proximities, gener, and degree at the ordinal level
(keeping ties), recall the Multidimensional Scaling dialog box and click Model.

» Select Ordinal as the proximity transformation.
» Click Continue.

» Click Restrictions in the Multidimensional Scaling dialog box.

Figure 14-18
Restrictions dialog box

Multidimensional Scaling: Restrictions

— Restrictions on Common Space B |
€ Mo restrictions Concel
" Some coordinates fixed o
& Linear combination of independent varables Help

r— Restriction Variables

Read vanables from: File... | C: \kinship_var.sav

Available:

gender

gener E
degres

Independent variable transformations: IOrdinaI (keep ties) - I
Weqee: IE frts: I‘I

» Select gener and degree.

» Select Ordinal (keep ties) from the Independent variable transformations drop-down list.
» Click Change.

» Click Continue.

» Click OK in the Multidimensional Scaling dialog box.
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Transformation Plots

The transformation plots are a good first check to see whether the original
transformations were appropriate. If the plots are approximately linear, the linear
assumption is appropriate. If not, check the stress measures to see whether there is an
improvement in fit and check the common space plot to see whether the interpretation
is more useful.

The independent variables each obtain approximately linear transformations, so it
may be appropriate to interpret them as numerical. However, the proximities do not
obtain a linear transformation, so it is possible that the ordinal transformation is more
appropriate for the proximities.

Figure 14-19
Transformed proximities
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Stress Measures

The stress for the current solution supports the argument for scaling the proximities
at the ordinal level.
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Figure 14-20

Stress and fit measures
Mormalized Raw Stress 03137
Stress-l AT7128
Stress-l .G19g7=
S-Stress 079538
Dispersion Accounted
For (DAF.) 96863
Tuckers Coefficient of
Congruence 98419

PROXSCAL minimizes Mormalized Raw Stress.
3. Optimal scaling factor = 1.032.

b. Optimal scaling factor = .980.

The normalized raw stress for the previous solution is 0.06234. Scaling the variables
by using nondefault transformations halves the stress to 0.03137.

Final Coordinates of the Common Space

The common space plots offer essentially the same interpretation of the dimensions
as the previous solution.

Figure 14-21
Common space coordinates
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Discussion

It is best to treat the proximities as ordinal variables, because there is great
improvement in the stress measures. As a next step, you may want to “untie” the
ordinal variables—that is, allow equivalent values of the original variables to obtain
different transformed values. For example, in the first source, the proximities between
Aunt and Son, and Aunt and Grandson, are 85. The “tied” approach to ordinal variables
forces the transformed values of these proximities to be equivalent, but there is no
particular reason for you to assume that they should be. In this case, allowing the
proximities to become untied frees you from an unnecessary restriction.

Recommended Readings

See the following texts for more information on multidimensional scaling:

Commandeur, J. J. F., and W. J. Heiser. 1993. Mathematical derivations in the
proximity scaling (PROXSCAL) of symmetric data matrices. Leiden: Department of
Data Theory, University of Leiden.

De Leeuw, J., and W. J. Heiser. 1980. Multidimensional scaling with restrictions on
the configuration. In: Multivariate Analysis, Vol. V, P. R. Krishnaiah, ed. Amsterdam:
North-Holland, 501-522.

Heiser, W. J. 1981. Unfolding analysis of proximity data. Leiden: Department of Data
Theory, University of Leiden.

Heiser, W. J., and F. M. T. A. Busing. 2004. Multidimensional scaling and unfolding
of symmetric and asymmetric proximity relations. In: Handbook of Quantitative
Methodology for the Social Sciences, D. Kaplan, ed. Thousand Oaks, Calif.: Sage
Publications, Inc, 25-48.

Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29, 1-28.

Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method.
Psychometrika, 29, 115-129.

Shepard, R. N. 1962. The analysis of proximities: Multidimensional scaling with an
unknown distance function 1. Psychometrika, 27, 125-140.
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Shepard, R. N. 1962. The analysis of proximities: Multidimensional scaling with an
unknown distance function II. Psychometrika, 27, 219-246.
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Multidimensional Unfolding

The Multidimensional Unfolding procedure attempts to find a common quantitative
scale that allows you to visually examine the relationships between two sets of objects.

Example: Breakfast Item Preferences

In a classic study (Green and Rao, 1972), 21 Wharton School MBA students and
their spouses were asked to rank 15 breakfast items in order of preference, from
1 = ‘most preferred’ to 15 = ‘least preferred’. This information is collected in
breakfast_overall.sav.

The results of the study provide a typical example of the degeneracy problem
inherent in most multidimensional unfolding algorithms that is solved by penalizing
the coefficient of variation of the transformed proximities (Busing, Groenen, and
Heiser, 2005). You will see a degenerate solution and will see how to solve the problem
using Multidimensional Unfolding, allowing you to determine how individuals
discriminate between breakfast items. Syntax for reproducing these analyses can be
found in prefscal_breakfast-overall.sps.

Producing a Degenerate Solution

» To run a Multidimensional Unfolding analysis, from the menus choose:

Analyze
Scale
Multidimensional Unfolding...

347
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Figure 15-1
Multidimensional Unfolding main dialog box

Multidimensional Unfolding

%
& Gender [gender] Eziimities:
Toast pop-up [TP] @
E dButteredtoast[BT]
dEninshmuffinanm Reset
ey danut 0]
iICinnamon taast [ETM
Weights: [ Help ]
FRows:
| |
Sources:
| |
[ Model... ] [Hgstrictions...] [thions... ] [ Plats... ] [ Output... ]

» Select Toast pop-up through Corn muffin and butter as proximities variables.

» Click Options.
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Figure 15-2
Options dialog box

Multidimensional Unfolding: Options

Initial Canfiguration |teration Criteria
(=) Classical Stress conyergence: 000
mpLtauan by . inimumn stress: oo
) Rungs-Clift
@ Canssmandnss b girnuimn iberations: 5000
() Centroids
_Eh _ Penalty term
DIEES: Strength: 1.0
() Multiple random starts
Mumber of starts: RerER 0o
() Cusghom
Cuztom Configuration
Fiead wariables fram:
Humber must mateh masimum model dimensionality, curesntiys 2

Yariables containing row coardinates should precede those
containing colurmn coordinates.

Ayl able:; Selected;

Select Spearman as the imputation method for the Classical start.

In the Penalty Term group, type 1.0 as the value of the Strength parameter and 0.0 as
the value of the Range parameter. This turns off the penalty term.

Click Continue.

Click OK in the Multidimensional Unfolding dialog box.

Following is the command syntax generated by these selections:

PREFSCAL
VARIABLES=TP BT EMM JD CT BMM HRB TMd BTJ TMn CB DP GD CC CMB
/INITIAL=CLASSICAL (SPEARMAN)
/TRANSFORMATION=NONE
/PROXIMITIES=DISSIMILARITIES
/CRITERIA=DIMENSIONS (2,2) DIFFSTRESS(.000001) MINSTRESS(.0001)
MAXITER(5000)
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/PENALTY=LAMBDA (1.0) OMEGA(0.0)
/PRINT=MEASURES COMMON
/ PLOT=COMMON

m  This syntax specifies an analysis on variables tp (Toast pop-up) through cmb (Corn

muffin and butter).

B The INITIAL subcommand specifies that the starting values be imputed using

Spearman distances.

B The specified values on the PENALTY subcommand essentially turn off the penalty
term, and as a result, the procedure will minimize Kruskal’s Stress-1I. This will
result in a degenerate solution.

The PLOT subcommand requests plots of the common space.

All other parameters fall back to their default values.

Measures
Figure 15-3

Measures for degenerate solution
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The algorithm converges to a solution after 154 iterations, with a penalized stress
(marked final function value) of 0.0000990. Since the penalty term has been turned
off, penalized stress is equal to Kruskal’s Stress-I (the stress part of the function
value is equivalent to Kruskal’s badness-of-fit measure). Low stress values generally
indicate that the solution fits the data well, but there are several warning signs of a
degenerate solution:

m  The coefficient of variation for the transformed proximities is very small relative

to the coefficient of variation for the original proximities. This suggests that the
transformed proximities for each row are near-constant, and thus the solution will
not provide any discrimination between objects.

The sum-of-squares of DeSarbo’s intermixedness indices are a measure of how
well the points of the different sets are intermixed. If they are not intermixed,

this is a warning sign that the solution may be degenerate. The closer to 0, the
more intermixed the solution. The reported value is very large, indicating that
the solution is not intermixed.

Shepard’s rough nondegeneracy index, which is reported as a percentage of
different distances, is equal to 0. This is a clear numerical indication that there are
insufficiently different distances and that the solution is probably degenerate.
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Common Space

Figure 15-4
Joint plot of common space for degenerate solution
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Dimension 1

Visual confirmation that the solution is degenerate is found in the joint plot of the
common space of row and column objects. The row objects (individuals) are situated
on the circumference of a circle centered on the column objects (breakfast items),
whose coordinates have collapsed to a single point.
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Running a Non-Degenerate Analysis

Figure 15-5
Options dialog box

Multidimensional Unfolding: Options
Iritial Configuration |teration Criteria
(5) Classical Stress conyergence: .oaoom

. -Cancel
Imputation by: Minirmum stress: oom
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Centroids
O - Penalty term
Strength: ns
() Multiple random starts
Range: 1.0

() Custom

Cuztarn Configuration

[]

» To produce a non-degenerate solution, click the Dialog Recall tool and select
Multidimensional Unfolding.

» Click Options in the Multidimensional Unfolding dialog box.

» In the Penalty Term group, type 0.5 as the value of the Strength parameter and 1.0 as
the value of the Range parameter. This turns off the penalty term.

» Click Continue.
» Click OK in the Multidimensional Unfolding dialog box.

Following is the command syntax generated by these selections:

PREFSCAL
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VARIABLES=TP BT EMM JD CT BMM HRB TMd BTJ TMn CB DP GD CC CMB
/INITIAL=CLASSICAL (SPEARMAN)

/TRANSFORMATION=NONE

/PROXIMITIES=DISSIMILARITIES

/CRITERIA=DIMENSIONS (2,2) DIFFSTRESS(.000001) MINSTRESS(.0001)
MAXITER(5000)

/PENALTY=LAMBDA (0.5) OMEGA(1.0)

/PRINT=MEASURES COMMON

/ PLOT=COMMON

B The only change is on the PENALTY subcommand. LAMBDA has been set to 0.5,

and OMEGA has been set to 1.0, their default values.

Measures
Figure 15-6
Measures for non-degenerate solution
tterations 157
Final Function “alue GE4E830
Function *alue Stress Part 2425265
Partz Penatty Part 1.9317409
Badnesz of Fit Maormalized Stress 0583589
Kruskal's Streass-| 2415758
Kruskal's Stress-I 287599
Young's 5-Stress-| 3446361
A ‘s S-St -1l
oung's ress SAm 27
Goodness of Fit Dispersion Accounted Far S416411
Wariance Sccounted For TES1552
Recovered Preference
Orders 718594
Spearman's Rho BT
Kendal's Tau-b BHET2S
“ariation Wariation Prosximities 2390170
Coefficients ati
Varlgﬂpn Transfarmed B0 56
Proximities
Warigtion Distances 4833617
Degenstacy Indices Sum-of-Sguares of
DeSarho's Intermixedness 1580979
Indices
Shepard's Raough 7895892
Mondegeneracy Index

The problems noted in the measures for the degenerate solution have been corrected
here.
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The normalized stress is no longer O.

The coefficient of variation for the transformed proximities now has a similar value
to the coefficient of variation for the original proximities.

DeSarbo’s intermixedness indices are much closer to 0, indicating that the solution
is much better intermixed.

m  Shepard’s rough nondegeneracy index, which is reported as a percentage of
different distances, is now nearly 80%. There are sufficiently different distances,
and the solution is probably non-degenerate.

Common Space

Figure 15-7
Joint plot of common space for non-degenerate solution
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Dimension 1

The joint plot of the common space allows for an interpretation of the dimensions. The
horizontal dimension appears to discriminate between soft and hard bread or toast,
with softer items as you move right along the axis. The vertical dimension does not
have a clear interpretation, although it perhaps discriminates based on convenience,
with more “formal” items as you move down along the axis.
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This creates several clusters of breakfast items. For example, the donuts, cinnamon
buns, and Danish pastry form a cluster of soft and somewhat informal items. The
muffins and cinnamon toast form a cluster of harder but more formal items. The other
toasts and hard rolls form a cluster of hard and somewhat informal items. The toast
pop-up is a hard item that is extremely informal.

The individuals represented by the row objects are clearly split into clusters
according to preference for hard or soft items, with considerable within-cluster
variation along the vertical dimension.

Example: Three-Way Unfolding of Breakfast Item Preferences

In a classic study (Green et al., 1972), 21 Wharton School MBA students and their
spouses were asked to rank 15 breakfast items in order of preference, from 1 = ‘most
preferred’ to 15 = ‘least preferred’. Their preferences were recorded under six different
scenarios, from “Overall preference” to “Snack, with beverage only”. This information
is collected in breakfast.sav.

The six scenarios can be treated as separate sources. Use PREFSCAL to perform a
three-way unfolding of the rows, columns, and sources. Syntax for reproducing these
analyses can be found in prefscal_breakfast.sps.

Running the Analysis

» To run a Multidimensional Unfolding analysis, from the menus choose:

Analyze
Scale
Multidimensional Unfolding...
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Figure 15-8
Multidimensional Unfolding main dialog box
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| |
Sources:
| |
[ Model... ] [Hgstrictions...] [thions... ] [ Plots... ] [ Output... ]

» Select Toast pop-up through Corn muffin and butter as proximities variables.
» Select Menu scenarios as the source variable.

» Click Model.
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Figure 15-9
Model dialog box

Multidimensional Unfolding: Model

Scaling Model Prosimity Transformations
() | dentity (%) None
_
) Lingar

(&) 'Weighted Euclidean

() Generalized Euclidean () Spline

Frawirities
(=) Diissimilarities
O Similarities O Smooth
() Drdinal
Dimenszions
P itirnunm: 2 [ incude intercept
b aptirLirn: 2

Apply Transformations
(%) 'Within each row separately
() Within each source separately

() Across all sources simultaneously

» Select Weighted Euclidean as the scaling model.
» Click Continue.

» Click Options in the Multidimensional Unfolding dialog box.
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Figure 15-10
Options dialog box
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» Select Spearman as the imputation method for the Classical start.

» Click Continue.

» Click Plots in the Multidimensional Unfolding dialog box.
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Figure 15-11
Plots dialog box
Multidimensional Unfolding: Plots &
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» Select Individual spaces in the Plots group.
» Click Continue.

» Click OK in the Multidimensional Unfolding dialog box.

Following is the command syntax generated by these selections:

PREFSCAL
VARIABLES=TP BT EMM JD CT BMM HRB TMd BTJ TMn CB DP GD CC CMB
/INPUT=SOURCES (srcid )
/INITIAL=CLASSICAL (SPEARMAN)
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/CONDITION=ROW

/TRANSFORMATION=NONE

/PROXIMITIES=DISSIMILARITIES

/MODEL=WEIGHTED

/CRITERIA=DIMENSIONS (2,2) DIFFSTRESS(.000001) MINSTRESS(.0001)
MAXITER(5000)

/PENALTY=LAMBDA (0.5) OMEGA(1.0)

/PRINT=MEASURES COMMON

/PLOT=COMMON WEIGHTS INDIVIDUAL ( ALL )

This syntax specifies an analysis on variables tp (Toast pop-up) through cmb (Corn
muffin and butter). The variable srcid is used to identify the sources.

The INITIAL subcommand specifies that the starting values be imputed using
Spearman distances.

The MODEL subcommand specifies a weighted Euclidean model, which allows each
individual space to weight the dimensions of the common space differently.

The PLOT subcommand requests plots of the common space, individual spaces,
and individual space weights.

All other parameters fall back to their default values.
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Measures
Figure 15-12
Measures
terations 481
Final Function % alue .G199642
Function Yalue Stress Part 3680994
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ECOVENES reference 02532
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Waristion Warigtion Proximities 5580170
Coefficients Wariation Transformed
Proximities BITEETS
Yarigtion Distances 44584515
Degeneracy Indices Sum-of-Squares of
DeSarbo's Intermixedness 2199287
Indices
Shepard's Rough
Mondegeneracy Index FB43613

The algorithm converges after 481 iterations, with a final penalized stress of 0.8199642.
The variation coefficients and Shepard’s index are sufficiently large, and DeSarbo’s
indices are sufficiently low, to suggest that there are no problems with degeneracy.
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Figure 15-13
Joint plot of common space
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Multidimensional Unfolding

The joint plot of the common space shows a final configuration that is very similar
to the two-way analysis on the overall preferences, with the solution flipped over the
45-degree line. Thus, the vertical dimension now appears to discriminate between soft
and hard bread or toast, with softer items as you move up along the axis. The horizontal
dimension now does not have a clear interpretation, though perhaps it discriminates
based on convenience, with more “formal” items as you move left along the axis.

The individuals represented by the row objects are still clearly split into clusters

according to preference for “hard” or “soft” items, with considerable within-cluster
variation along the horizontal dimension.
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Individual Spaces
Figure 15-14
Dimension weights
Dimension
1 2 Specificity”
Source Overall preference 3.235 4297 86
Breakfast, with juice, bacon 4 FE3 2193 45T
and eggs, and heverage
Breakfast, with juice, cold
cereal, and beverage 413 343@ 108
Breakfast, with juice,
pancakes, sausage, and 429 3267 64
beverage
Breakfast, with beverage 3124 4413 273
anly
Snack, with beverage only 2750 4 541 33
Importancet 504 A9E

a. Specificity indicstes the typicalty of & source. The range of specificity
iz between zero and one, vwwhere zero indicates an average source
with identical dimension weights and one indicates a very specific
source with one exceptional, large dimension weight and other
weights near zera.

fa

. Relative impartance of each dimension, given as the ratio between the
sum-of-sguares of one dimension and the total sum-of-squares.

An individual space is computed for each source. The dimension weights show how
the individual spaces load on the dimensions of the common space. A larger weight
indicates a larger distance in the individual space and thus greater discrimination
between the objects on that dimension for that individual space.

B Specificity is a measure of how different an individual space is from the common
space. An individual space that was identical to the common space would have
identical dimension weights and a specificity of 0, while an individual space that
was specific to a particular dimension would have a single large dimension weight
and a specificity of 1. In this case, the most divergent sources are Breakfast, with
Jjuice, bacon and eggs, and beverage, and Snack, with beverage only.

®  Importance is a measure of the relative contribution of each dimension to the
solution. In this case, the dimensions are equally important.
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Figure 15-15
Dimension weights
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The dimension weights chart provides a visualization of the weights table. Breakfast,
with juice, bacon and eggs, and beverage and Snack, with beverage only are the nearest
to the dimension axes, but neither are strongly specific to a particular dimension.
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Figure 15-16
Joint plot of individual space “Breakfast, with juice, bacon and eggs, and beverage”
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Dimension 1

The joint plot of the individual space Breakfast, with juice, bacon and eggs, and
beverage shows the effect of this scenario on the preferences. This source loads more

heavily on the first dimension, so the differentiation between items is mostly due to
the first dimension.
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Figure 15-17
Joint plot of individual space “Snack, with beverage only”
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Dimension 1

The joint plot of the individual space Snack, with beverage only shows the effect of this
scenario on the preferences. This source loads more heavily on the second dimension,
so the differentiation between items is mostly due to the second dimension. However,
there is still quite a bit of differentiation along the first dimension because of the fairly
low specificity of this source.

Using a Different Initial Configuration

The final configuration can depend on the starting points given to the algorithm.
Ideally, the general structure of the solution should remain the same; otherwise, it can
be difficult to ascertain which is correct. However, details may come into sharper focus
as you try different initial configurations, such as using a correspondence start on the
three-way analysis of the breakfast data.

» To produce a solution with a correspondence start, click the Dialog Recall tool and
select Multidimensional Unfolding.
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» Click Options in the Multidimensional Unfolding dialog box.

Figure 15-18
Options dialog box

Multidimensional Unfolding: Options
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» Select Correspondence in the Initial Configuration group.

» Click Continue.

» Click OK in the Multidimensional Unfolding dialog box.

Following is the command syntax generated by these selections:

PREFSCAL

VARIABLES=TP BT EMM JD CT BMM HRB TMd BTJ TMn CB DP GD CC CMB

/INPUT=SOURCES (srcid )
/INITIAL=CORRESPONDENCE
/TRANSFORMATION=NONE
/PROXIMITIES=DISSIMILARITIES

/CRITERIA=DIMENSIONS (2,2) DIFFSTRESS(.000001)

MAXITER(5000)

MINSTRESS(.0001)
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/PENALTY=LAMBDA (0.5) OMEGA(1.0)
/PRINT=MEASURES COMMON
/PLOT=COMMON WEIGHTS INDIVIDUAL ( ALL )

B The only change is on the INITIAL subcommand. The starting configuration has
been set to CORRESPONDENCE, which uses the results of a correspondence analysis
on the reversed data (similarities instead of dissimilarities), with a symmetric
normalization of row and column scores.

Measures
Figure 15-19
Measures for correspondence initial configuration
fterations 385
Final Function % alue 8140741
Function “alue Stress Part 3493640
Parts Perialty Part 15969229
Badness of Fit Mormalized Stress 212145
Kruskal's Stress-l 3481387
Hruskal's Stress-ll 10770522
Young's S-Stress-l 4512632
Young's S-Stress-ll
EETITI3
zoodness of Fit Dispersion Accounted For B7ETESS
Wariance Accounted For 5183498
gfgg:sered Preference 17498
Spearman's Rho G446272
Kendal's Tau-b 2163230
“ariation Warigtion Proximities 5590170
Coefficients iati
:ra;rl?:i:';;ransformed 122308
wariation Distances 4043695
Degeneracy Indices Sum-of-Sguares of
DeZarho's Intermixedness 1. 7571557
Indices
gzzﬂ:;ﬁ;:zgwndex F332124

The algorithm converges after 385 iterations, with a final penalized stress of
0.8140741. This statistic, the badness of fit, the goodness of fit, variation coefficients,
and Shepard’s index are all very similar to those for the solution using the classical
Spearman start. DeSarbo’s indices is somewhat different, with a value of 1.7571887
instead of 0.2199287, which suggests that the solution using the correspondence start
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is not as well mixed. To see how this affects the solution, look at the joint plot of
the common space.

Common Space

Figure 15-20
Joint plot of common space for correspondence initial configuration

Cinnamaon toast
0 Caorn muffin and buttero
English muffin and margarineo

Blugberry muffin and margarine
Cinnamnn bun g 7 10 20 o

33028
Jeltgmnytionut 12 21&32631622

': O Qanish paktyC 50! o 38 M
° g 0915, 305 %é 340
W 6 O o
< 14 417 41342 2?0 "
£ o O 3124 35 o
E 9 36 0 Op 40

. 019 33 4

: a7

320 ©

O Buttere
Butterad toast and jelly o 448#Ftois and butter

OToast and marmalade

o

Toast and margarine o
Toast pop-up

T T T T T T

-2 -1 0 1 2 3

Dimension 1

The joint plot of the common space shows a final configuration that is similar to
the analysis with the classical Spearman initial configuration; however, the column

objects (breakfast items) are situated around the row objects (individuals) rather than
intermixed with them.
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Figure 15-21
Dimension weights for correspondence initial configuration
Dimenzion
1 2 Specificity”

Source Overall preference 2836 3877 279
Breskiaszt, with juice,
hacon and eqas, and 4727 1.207 36
heverage
Breakfast, with juice,
cold cereal, and 4183 2377 263
beverage
Breakfast, with juice,
pancakes, sausage, 4412 1.983 389
and beverage
Breakfast, vith 2605 | 4050 350
beverage only
Snack, with heverage 1 564 4415 552
anly

Importancet 556 44

a. Specificty indicates the typicalty of & source. The range of
specificity is between zero and one, where zero indicates an
average source with identical dimension weights and one
indicates a very specific source with one exceptional, large

dimension weight and ather weights near zero.

o

. Relgtive importance of each dimension, given as the ratio

between the sum-of-squares of one dimension and the total
sum-of-squares.

Multidimensional Unfolding

Under the correspondence initial configuration, each of the individual spaces has

a higher specificity; that is, each situation under which the participants ranked the
breakfast items is more strongly associated with a specific dimension. The most
divergent sources are still Breakfast, with juice, bacon and eggs, and beverage, and

Snack, with beverage only.



372

Chapter 15

Figure 15-22

Joint plot of individual space “Breakfast, with juice, bacon and eggs, and beverage” for
correspondence initial configuration
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Dimension 1

The higher specificity is evident in the joint plot of the individual space Breakfast,
with juice, bacon and eggs, and beverage. The source loads even more heavily on
the first dimension than under the classical Spearman start, so the row and column

objects show a little less variation on the vertical axis and a little more variation on
the horizontal axis.
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Figure 15-23
Joint plot of individual space “Snack, with beverage only” for correspondence initial
configuration
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Dimension 1

The joint plot of the individual space Snack, with beverage only shows that the row and

column objects lie more closely to a vertical line than under the classical Spearman
start.

Example: Examining Behavior-Situation Appropriateness

In a classic example (Price and Bouffard, 1974), 52 students were asked to rate the
combinations of 15 situations and 15 behaviors on a 10-point scale ranging from 0 =
“extremely appropriate’ to 9 = ’extremely inappropriate’. Averaged over individuals,
the values are taken as dissimilarities.

This information is collected in behavior.sav. Use Multidimensional Unfolding
to find clusterings of similar situations and the behaviors with which they are

most closely associated. Syntax for reproducing these analyses can be found in
prefscal_behavior.sps.
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Running the Analysis

» To run a Multidimensional Unfolding analysis, from the menus choose:

Analyze
Scale
Multidimensional Unfolding...

Figure 15-24
Multidimensional Unfolding main dialog box

Multidimensional Unfolding
Brozimities: oK
y T g o ]
& Tal
25
Wi
Sue @
Wieights: [ Help ]
Fows:
| &5 ROWID |
Sources;
| |
’ Model... ] [Hgstriclions...] [ Options. . ] ’ Plats... ] [ Clutput... ]

» Select Run through Shout as proximities variables.
» Select ROWID as the row variable.

» Click Model.
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Figure 15-25
Model dialog box

Multidimensional Unfolding: Model

Scaling Model Prosimity Transformations
(%) | dentity () Mone

() 'weighted Euclidean (®) Linear

() Generalized Euclidean () Spline

Frawirities
(=) Diissimilarities
O Similarities O Smooth
) Drdinal
Dimenszions
i 2 Include intercept
b aptirLirn: 2

Apply Transformations
() within each row separately
() Within each source separately

(=) Across all sources simultaneously

Select Linear as the proximity transformation, and choose to Include intercept.
Choose to apply transformations Across all sources simultaneously.
Click Continue.

Click Options in the Multidimensional Unfolding dialog box.
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vV v v Vv VY

Figure 15-26
Options dialog box
Multidimensional Unfolding: Options
Initial Canfiguration Iteration Criteria
() Classical Stress conyergence: 000
Cancel
inimumn stress: oo
O Ross i
@ Caelanes b girnuimn iberations: 5000
Centroids
o B Penalty term
Strength: [IR3]
() Multiple random starts
Fange: 1.0

(%) Cusgtom

Cuztom Configuration

Fiead wariables fromm: C:\Program FileshSPSSATutorialh. . Abehavior_ini.zav

Mumber must match masimum model dimenzsionality, curmently: 2

Yariable: containing row coordinates should precede those
containing colurn coordinates.

Available: Selected:
dim1 dim

dim2 E dirnz

Select Custom in the Initial Configuration group.

Choose behavior_ini.sav as the file containing the custom initial configuration.
Select diml and dim?2 as the variables specifying the initial configuration.
Click Continue.

Click Plots in the Multidimensional Unfolding dialog box.
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Figure 15-27
Plots dialog box
Multidimensional Unfolding: Plots &
Multiple starts Final common space Transformation plots
[Tinitial comman space Space weightz [ 5hepard plats
Stress per dimension Individual spaces [ Scatterplot of fit
[ Residual plats
Colors and M arkers
BOWID LColors:
»
Run s [:::::::::::]
g o
Ef% M arkers:
Tite:
i N —
Sleen bﬂ III
Source Flats
All zources Sources:
Select sources &dd
Source number: Change
Remove
Row Plots
All rows Btz
Select rows Add
B o rmiber: Change
Remove

» Select Transformation plots in the Plots group.
» Click Continue.

» Click OK in the Multidimensional Unfolding dialog box.

Following is the command syntax generated by these selections:

PREFSCAL
VARIABLES=Run Talk Kiss Write Eat Sleep Mumble Read Fight Belch Argue Jump
Cry Laugh Shout
/INPUT=ROWS (ROWID )
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/INITIAL=( 'C:\Program Files\SPSS\Tutoriall\sample_files\behavior_ini.sav'

diml dim?2

/CONDITION=UNCONDITIONAL

/TRANSFORMATION=LINEAR (INTERCEPT)
/PROXIMITIES=DISSIMILARITIES

/MODEL=IDENTITY

/CRITERIA=DIMENSIONS (2,2) DIFFSTRESS(.000001) MINSTRESS(.0001)
MAXITER (5000)

/PENALTY=LAMBDA (0.5) OMEGA(1.0)

/PRINT=MEASURES COMMON

/PLOT=COMMON TRANSFORMATIONS

This syntax specifies an analysis on variables run through shout. The variable
rowid is used to identify the rows.

The INITIAL subcommand specifies that the starting values be taken from the file
behavior_ini.sav. The row and column coordinates are stacked, with the column
coordinates following the row coordinates.

The CONDITION subcommand specifies that all proximities can be compared with
each other. This is true in this analysis, since you should be able to compare the
proxmities for running in a park and running in church and see that one behavior is
considered less appropriate than the other.

The TRANSFORMATION subcommand specifies a linear transformation of

the proximities, with intercept. This is appropriate if a 1-point difference in
proximities is equivalent across the range of the 10-point scale. That is, if the
students have assigned their scores so that the difference between 0 and 1 is the
same as the difference between 5 and 6, then a linear transformation is appropriate.

The PLOT subcommand requests plots of the common space and transformation
plots.

All other parameters fall back to their default values.

)



379

Measures
Figure 15-28
Measures
fterationz 168
Final Function Walue Ba2772a
Function Walue Stress Part 900001
Parts Penialty Part 21745089
Badness of Fit Mormalized Stress 0361000
Kruskal's Stress-l 2800001
Kruskal's Stress- AS224668
Young's S-Stress-l 2760871
Young's 3-Stress-ll
4525933
Goodness of Fit Dizpersion Accounted Faor 9639000
“ariance Accounted For BO32862
gf;::Sered Preference FRORE3E
Spearman's Rho 8951120
Kendall's Tau-b 7202452
“aristion “aristion Proximities 5138436
Coefficients it
:rzlmi:;;ransformed 4751034
“ariation Distances 3912392
Degeneracy Indices Sum-of-Sguares of
DeSarbo's Intermixedness 4957369
Indices
Shepard's Rough 73810

Mondegeneracy Index

Multidimensional Unfolding

The algorithm converges after 169 iterations, with a final penalized stress of 0.6427725.
The variation coefficients and Shepard’s index are sufficiently large, and DeSarbo’s
indices are sufficiently low, to suggest that there are no problems with degeneracy.
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Common Space

Figure 15-29
Joint plot of common space
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Dimension 1

The horizontal dimension appears to be more strongly associated with the column
objects (behaviors) and discriminates between inappropriate behaviors (fighting,
belching) and more appropriate behaviors. The vertical dimension appears to be

more strongly associated with the row objects (situations) and defines different
situational-behavior restrictions.

B Toward the bottom of the vertical dimension are situations (church, class) that

restrict behavior to the quieter/introspective types of behaviors (read, write). Thus,
these behaviors are pulled down the vertical axis.

m  Toward the top of the vertical dimension are situations (movies, game, date) that
restrict behavior to the social/extroverted types of behaviors (eat, kiss, laugh).
Thus, these behaviors are pulled up the vertical axis.

|

At the center of the vertical dimension, situations are separated on the horizontal
dimension based on the general restrictiveness of the situation. Those further
from the behaviors (interview) are the most restricted, while those closer to the
behaviors (room, park) are generally less restricted.
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Proximity Transformations

Figure 15-30
Transformation plot

Transformed Proximity
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Unconditional linear transformation with intercept

The proximities were treated as linear in this analysis, so the plot of the transformed
values versus the original proximities forms a straight line. The fit of this solution is
good, but perhaps a better fit can be achieved with a different transformation of the
proximities.

Changing the Proximities Transformation (Ordinal)

» To produce a solution with an ordinal transformation of the proximities, click the
Dialog Recall tool and select Multidimensional Unfolding.
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» Click Model in the Multidimensional Unfolding dialog box.

Figure 15-31
Model dialog box

Multidimensional Unfolding: Model

Secaling Madel Prawimity Transformations
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(%) Across all sources simultaneously

» Select Ordinal as the proximity transformation.
» Click Continue.

» Click OK in the Multidimensional Unfolding dialog box.

Following is the command syntax generated by these selections:

PREFSCAL
VARIABLES=Run Talk Kiss Write Eat Sleep Mumble Read Fight Belch Argue Jump
Cry Laugh Shout
/INPUT=ROWS (ROWID )
/INITIAL=( 'C:\Program Files\SPSS\Tutorial\sample_files\behavior_ini.sav' )
diml dim?2
/CONDITION=UNCONDITIONAL
/TRANSFORMATION=ORDINAL (KEEPTIES)
/PROXIMITIES=DISSIMILARITIES
/MODEL=IDENTITY
/CRITERIA=DIMENSIONS (2,2) DIFFSTRESS(.000001) MINSTRESS(.0001)
MAXITER(5000)
/PENALTY=LAMBDA (0.5) OMEGA(1.0)
/PRINT=MEASURES COMMON



383

Multidimensional Unfolding

/PLOT=COMMON TRANSFORMATIONS

B The only change is on the TRANSFORMATION subcommand. The transformation
has been set to ORDINAL, which preserves the order of proximities but does not
require that the transformed values be proportional to the original values.

Measures
Figure 15-32
Measures for solution with ordinal transformation
fterationz 268
Final Function W alue B044671
Function Yalue Stress Part 747239
Parts Penalty Part 20911875
Badness of Fit Maormalized Stress 0303283
Hruzkal's Stress-| 747239
Kruszkal's Stress-ll 4444541
Young's S-Stress-l 2707147
Young's S-Stress-l
3978003
Goodness of Fit Dizpersion Accounted For AAE34715
Wariance Accounted For 5454455
g.:;::sered Preference BETAI06
Speatman's Rho A032676
Hendal's Tau-b 7532788
“Yariation Wariation Proximities 5138436
Coefficients it
:raor;?xi:;;ransformed 4930015
waristion Distances 4254549
Degeneracy Indices Sum-of-Sgquares of
DeSarbo's Intermizedness 3610680
Indices
ﬁgigigieﬁggawﬂdex 7489048

The algorithm converges after 268 iterations, with a final penalized stress of 0.6044671.
This statistic and the other measures are slightly better for this solution than the one
with a linear transformation of the proximities.
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Common Space

Figure 15-33
Joint plot of common space for solution with ordinal transformation
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Dimension 1

The interpretation of the common space is the same under both solutions. Perhaps this
solution (with the ordinal transformation) has relatively less variation on the vertical

dimension than on the horizontal dimension than is evident in the solution with the
linear transformation.
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Proximity Transformations

Figure 15-34
Transformation plot for solution with ordinal transformation
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Aside from the values with the largest proximities, which bend up from the rest of the
values, the ordinal transformation of proximities is fairly linear. These proximities
likely account for most of the differences between the ordinal and linear solutions;
however, there isn’t enough information here to determine whether this nonlinear trend
in the higher values is a true trend or an anomaly.

Recommended Readings

See the following texts for more information:

Busing, F. M. T. A, P. J. F. Groenen, and W. J. Heiser. 2005. Avoiding degeneracy
in multidimensional unfolding by penalizing on the coefficient of variation.
Psychometrika, 70, 71-98.
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Green, P. E., and V. Rao. 1972. Applied multidimensional scaling. Hinsdale, Il1.:
Dryden Press.

Price, R. H., and D. L. Bouffard. 1974. Behavioral appropriateness and situational
constraints as dimensions of social behavior. Journal of Personality and Social
Psychology, 30, 579-586.
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